Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36836966

ABSTRACT

This work focuses on carbon foams, whose peculiarity is a predominant open macroporous cellular network that can be provided with tailored texture and morphology by the modification of the preparation process. The goal was to obtain macroporous carbonaceous structures capable of being activated by following a simple thermo-foaming procedure using a few reagents. With this purpose in mind, carbon foams with different textural properties were synthesized from sucrose using two foaming processes: at atmospheric pressure and in a pressurized reactor. Iron and silver nitrates added to sucrose gave rise, after carbonization, to materials with iron oxides and elemental silver particles nano-dispersed in the carbon matrix and promoted microporosity in both cases and mesoporosity in the case of iron nitrate. Iron nitrate also catalyzes the graphitization of the carbon material during carbonization. All these findings show the potential of sucrose thermo-foaming process as a viable and sustainable path to produce versatile carbon materials, capable of being used in various applications.

2.
Materials (Basel) ; 15(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35009412

ABSTRACT

Hybrid xerogels RF/Si were synthesized by controlling the chemical variables involved in the polymerization process (i.e., molar ratios, dilution ratio, catalysts, etc.) and evaluated as insulator materials. Higher insulating performances were recorded for these hybrids compared with their counterparts made from only one of their components (i.e., RF or Si xerogels with similar porous characteristics). The analysis of chemical and structural features correlated with heat transfer methods was useful in understanding the sum of contributions involved in the thermal conductivity of RF/Si xerogels. Variables such as roughness and tortuosity can be used to improve the performance of xerogels from a different perspective. In this way, thermal conductivities of 25 mW/mK were achieved without lengthy process steps or special drying methods. Knowledge of material design and the use of microwave heating during the synthesis allowed us to approach a simple and cost-effective process. These results suggest that the hybrid materials developed in this work are a good starting point for the future of the massive production of insulation materials.

3.
Materials (Basel) ; 13(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31887992

ABSTRACT

Carbon xerogels with different macropore sizes and degrees of graphitization were evaluated as electrodes in lithium-ion batteries. It was found that pore structure of the xerogels has a marked effect on the degree of graphitization of the final carbons. Moreover, the incorporation of graphene oxide to the polymeric structure of the carbon xerogels also leads to a change in their carbonaceous structure and to a remarkable increase in the graphitic phase of the samples studied. The sample with the highest degree of graphitization (i.e., hybrid graphene-carbon xerogel) displayed the highest capacity and stability over 100 cycles, with values even higher than those of the commercial graphite SLP50 used as reference.

SELECTION OF CITATIONS
SEARCH DETAIL
...