Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 335: 114227, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36774982

ABSTRACT

The glucocorticoid (GC) hormone cortisol is often measured in seals to indicate their stress levels, although other endogenous GCs are usually overlooked. We investigated concentrations of four endogenous GCs in the urine of "orphan" harbour seal pups in rehabilitation. We hypothesised that the GC levels would be elevated if pups were socially isolated, without water access, and with low body mass. Ninety-six samples were collected from 32 pups at four different rehabilitation centres and were analysed by Ultra Performance Liquid Chromatography and Tandem Mass Spectrometry. Median urinary creatinine (Cr) concentrations of endogenous prednisolone (31.6 ng/mg/Cr) and prednisone (31.1 ng/mg/Cr) occurred in similar magnitude to cortisol (37.0 ng/mg/Cr), while median cortisone concentrations were higher (390 ng/mg/Cr). Prednisolone and prednisone concentrations were more strongly inversely related to pup growth rate and pup mass than cortisol and cortisone. Concentrations of all four GCs decreased with mass gain for pups with water access but did not decrease for pups without water; linear mixed models indicated the interaction between these trends was significant for cortisol and cortisone, but not for prednisolone or prednisone. These results indicate the potential value of measuring all four of these endogenous GC hormones in phocid seal pups.


Subject(s)
Cortisone , Phoca , Animals , Glucocorticoids , Hydrocortisone , Prednisone , Prednisolone
2.
Biol Lett ; 18(10): 20220316, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36285461

ABSTRACT

Rhythm and vocal production learning are building blocks of human music and speech. Vocal learning has been hypothesized as a prerequisite for rhythmic capacities. Yet, no mammalian vocal learner but humans have shown the capacity to flexibly and spontaneously discriminate rhythmic patterns. Here we tested untrained rhythm discrimination in a mammalian vocal learning species, the harbour seal (Phoca vitulina). Twenty wild-born seals were exposed to music-like playbacks of conspecific call sequences varying in basic rhythmic properties. These properties were called length, sequence regularity, and overall tempo. All three features significantly influenced seals' reaction (number of looks and their duration), demonstrating spontaneous rhythm discrimination in a vocal learning mammal. This finding supports the rhythm-vocal learning hypothesis and showcases pinnipeds as promising models for comparative research on rhythmic phylogenies.


Subject(s)
Music , Seals, Earless , Animals , Humans
3.
PeerJ ; 9: e12431, 2021.
Article in English | MEDLINE | ID: mdl-34820184

ABSTRACT

The ability to discriminate between familiar and unfamiliar calls may play a key role in pinnipeds' communication and survival, as in the case of mother-pup interactions. Vocal discrimination abilities have been suggested to be more developed in pinniped species with the highest selective pressure such as the otariids; yet, in some group-living phocids, such as harbor seals (Phoca vitulina), mothers are also able to recognize their pup's voice. Conspecifics' vocal recognition in pups has never been investigated; however, the repeated interaction occurring between pups within the breeding season suggests that long-term vocal discrimination may occur. Here we explored this hypothesis by presenting three rehabilitated seal pups with playbacks of vocalizations from unfamiliar or familiar pups. It is uncommon for seals to come into rehabilitation for a second time in their lifespan, and this study took advantage of these rare cases. A simple visual inspection of the data plots seemed to show more reactions, and of longer duration, in response to familiar as compared to unfamiliar playbacks in two out of three pups. However, statistical analyses revealed no significant difference between the experimental conditions. We also found no significant asymmetry in orientation (left vs. right) towards familiar and unfamiliar sounds. While statistics do not support the hypothesis of an established ability to discriminate familiar vocalizations from unfamiliar ones in harbor seal pups, further investigations with a larger sample size are needed to confirm or refute this hypothesis.

4.
Philos Trans R Soc Lond B Biol Sci ; 376(1836): 20200252, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34482729

ABSTRACT

Comparative animal studies of complex behavioural traits, and their neurobiological underpinnings, can increase our understanding of their evolution, including in humans. Vocal learning, a potential precursor to human speech, is one such trait. Mammalian vocal learning is under-studied: most research has either focused on vocal learning in songbirds or its absence in non-human primates. Here, we focus on a highly promising model species for the neurobiology of vocal learning: grey seals (Halichoerus grypus). We provide a neuroanatomical atlas (based on dissected brain slices and magnetic resonance images), a labelled MRI template, a three-dimensional model with volumetric measurements of brain regions, and histological cortical stainings. Four main features of the grey seal brain stand out: (i) it is relatively big and highly convoluted; (ii) it hosts a relatively large temporal lobe and cerebellum; (iii) the cortex is similar to that of humans in thickness and shows the expected six-layered mammalian structure; (iv) there is expression of FoxP2 present in deeper layers of the cortex; FoxP2 is a gene involved in motor learning, vocal learning, and spoken language. Our results could facilitate future studies targeting the neural and genetic underpinnings of mammalian vocal learning, thus bridging the research gap from songbirds to humans and non-human primates. Our findings are relevant not only to vocal learning research but also to the study of mammalian neurobiology and cognition more in general. This article is part of the theme issue 'Vocal learning in animals and humans'.


Subject(s)
Brain/anatomy & histology , Learning/physiology , Seals, Earless/anatomy & histology , Vocalization, Animal , Animals , Female , Seals, Earless/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...