Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 35(10): 3998-4006, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251100

ABSTRACT

Halide perovskite nanocrystals (PNCs) exhibit growing attention in optoelectronics due to their fascinating color purity and improved intrinsic properties. However, structural defects emerging in PNCs progressively hinder the radiative recombination and carrier transfer dynamics, limiting the performance of light-emitting devices. In this work, we explored the introduction of guanidinium (GA+) during the synthesis of high-quality Cs1-xGAxPbI3 PNCs as a promising approach for the fabrication of efficient bright-red light-emitting diodes (R-LEDs). The substitution of Cs by 10 mol % GA allows the preparation of mixed-cation PNCs with PLQY up to 100% and long-term stability for 180 days, stored under air atmosphere and refrigerated condition (4 °C). Here, GA+ cations fill/replace Cs+ positions into the PNCs, compensating intrinsic defect sites and suppressing the nonradiative recombination pathway. LEDs fabricated with this optimum material show an external quantum efficiency (EQE) near to 19%, at an operational voltage of 5 V (50-100 cd/m2) and an operational half-time (t50) increased 67% respect CsPbI3 R-LEDs. Our findings show the possibility to compensate the deficiency through A-site cation addition during the material synthesis, obtaining less defective PNCs for efficient and stable optoelectronic devices.

2.
Adv Mater ; 35(11): e2207993, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36401575

ABSTRACT

The kinetics of light emission in halide perovskite light-emitting diodes (LEDs) and solar cells is composed of a radiative recombination of voltage-injected carriers mediated by additional steps such as carrier trapping, redistribution of injected carriers, and photon recycling that affect the observed luminescence decays. These processes are investigated in high-performance halide perovskite LEDs, with external quantum efficiency (EQE) and luminance values higher than 20% and 80 000 Cd m-2 , by measuring the frequency-resolved emitted light with respect to modulated voltage through a new methodology termed light emission voltage modulated spectroscopy (LEVS). The spectra are shown to provide detailed information on at least three different characteristic times. Essentially, new information is obtained with respect to the electrical method of impedance spectroscopy (IS), and overall, LEVS shows promise to capture internal kinetics that are difficult to be discerned by other techniques.

3.
Gels ; 8(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35735734

ABSTRACT

A new family of C2-symmetric pseudopeptides with a high functional density for supramolecular interactions has been synthetized through the attachment of four amino acid subunits to a diamino aliphatic spacer. The resulting open-chain compounds present remarkable properties as low-molecular-weight hydrogelators. The self-assembled 3D networks were characterized by SEM analyses, observing regular nanofibres with 80-100 nm diameters. Spectroscopic and molecular modelling experiments revealed the presence of strong synergic effects between the H-bonding and π-π interactions, with the best results obtained for the homoleptic tetra-pseudopeptide derived from l-Phe. In addition, these bioinspired hydrogels possessed pH- and CO2-responsive sol-gel transitions. The formation of ammonium carbamate derivatives in the presence of carbon dioxide led to a detrimental change in its adequate self-assembly. CO2 desorption temperatures of ca. 70 °C were assigned to the thermodynamically favoured recovery of the supramolecular gel.

SELECTION OF CITATIONS
SEARCH DETAIL
...