Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Front Mol Biosci ; 10: 1223863, 2023.
Article in English | MEDLINE | ID: mdl-37849822

ABSTRACT

In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.

2.
BMC Res Notes ; 16(1): 140, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415245

ABSTRACT

OBJECTIVE: The purpose of this study was to develop a method for the isolation, culture, and PEG-mediated protoplast transfection from leaves of in vitro-grown plants of Ricinus communis. RESULTS: Factors such as the enzymatic composition and the incubation time were evaluated. The enzymatic solution, containing 1.6% Cellulase-R10 and 0.8% Macerozyme-R10, with 16 h of incubation, was the best condition to achieve a high protoplast yield (481.16 × 104 protoplasts/g FW) with a high percentage of viability (95%). The combination and concentration of enzymes have been shown to affect the protoplast isolation efficiency significantly. Furthermore, we found that a higher number of protoplasts (8.5 × 105 protoplast/g FW) was obtained at a longer incubation time, but their viability decreased. We obtained a simple and efficient protocol to isolate protoplast from Ricinus communis leaves and culture. A PEG-mediated protoplast transfection protocol was also established to introduce plasmid DNA into Ricinus communis genotypes cultivated in Colombia. Thus, strengthening advances in the genetic improvement processes for this crop are presented.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Protoplasts , Ricinus/genetics , Plant Leaves/genetics , Transfection
3.
Biology (Basel) ; 12(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37237517

ABSTRACT

Se is one of the essential nutrients for human health and animal growth; it participates in various physiological functions, such as antioxidant and immune response and metabolism. Se deficiency is related in the animal industry to poor production performance and the appearance of health problems in humans. Therefore, interest has arisen in producing fortified foods, nutritional supplements, and animal feed products enriched with Se. A sustainable strategy for bio-based products enriched with Se is microalgae. These are characterized by the ability to bioaccumulate inorganic Se and metabolize it into organic Se for product formulations of industrial interest. Although there are some reports on Se bioaccumulation, further exploration is needed to understand the effects of Se bioaccumulation in microalgae. Therefore, this article presents a systematic review of the genes or groups of genes that trigger biological responses associated with the metabolization of Se in microalgae. A total of 54,541 genes related to Se metabolization distributed in 160 different classes were found. Similarly, trends were identified through bibliometric networks on strains of greatest interest, bioproducts, and scientific production.

4.
Front Plant Sci ; 12: 667060, 2021.
Article in English | MEDLINE | ID: mdl-33968119

ABSTRACT

Plukenetia volubilis L. (Malpighiales: Euphorbiaceae), also known as Sacha inchi, is considered a promising crop due to its high seed content of unsaturated fatty acids (UFAs), all of them highly valuable for food and cosmetic industries, but the genetic basis of oil biosynthesis of this non-model plant is still insufficient. Here, we sequenced the total DNA of Sacha inchi by using Illumina and Nanopore technologies and approached a de novo reconstruction of the whole nucleotide sequence and the organization of its 164,111 bp length of the chloroplast genome, displaying two copies of an inverted repeat sequence [inverted repeat A (IRA) and inverted repeat B (IRB)] of 28,209 bp, each one separating a small single copy (SSC) region of 17,860 bp and a large single copy (LSC) region of 89,833 bp. We detected two large inversions on the chloroplast genome that were not presented in the previously reported sequence and studied a promising cpDNA marker, useful in phylogenetic approaches. This chloroplast DNA (cpDNA) marker was used on a set of five distinct Colombian cultivars of P. volubilis from different geographical locations to reveal their phylogenetic relationships. Thus, we evaluated if it has enough resolution to genotype cultivars, intending to crossbreed parents and following marker's trace down to the F1 generation. We finally elucidated, by using molecular and cytological methods on cut flower buds, that the inheritance mode of P. volubilis cpDNA is maternally transmitted and proposed that it occurs as long as it is physically excluded during pollen development. This de novo chloroplast genome will provide a valuable resource for studying this promising crop, allowing the determination of the organellar inheritance mechanism of some critical phenotypic traits and enabling the use of genetic engineering in breeding programs to develop new varieties.

5.
BMC Res Notes ; 13(1): 414, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883361

ABSTRACT

OBJECTIVE: It is necessary to improve biotech platforms based on in vitro cell tissue culture to support sacha inchi (Plukenetia volubilis L.) research programs and draw on the nutritional value of the high polyunsaturated fatty acid content of its oilseed. Here, we developed a rapid and efficient method for induction and direct in vitro shoot development for this species. RESULTS: Shoots were generated from hypocotyl explants. The highest organogenic response was obtained in woody plant medium supplemented with 1 mg/L thidiazuron and 0.5 mg/L zeatin supplemented with L-glutamine, adenine hemisulfate, and L-arginine. Shoots obtained using this medium were transferred and subcultivated with different concentrations of indole-3-butyric acid and 1-naphthylacetic acid for rooting. For the first time, a histological analysis was performed supporting direct organogenic development in this species. The plantlets obtained were transferred ex vitro with a survival percentage of 80%. The genetic stability of the plants recovered was confirmed by randomly amplified polymorphic DNA analysis. All results indicate that it would be possible to stimulate direct shoot formation from hypocotyls to support the sustainable use of this species.


Subject(s)
Euphorbiaceae , Fatty Acids, Unsaturated
6.
Biosci. j. (Online) ; 35(2): 347-355, mar./apr. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1048589

ABSTRACT

A regeneration protocol for castor bean plant (Ricinus communis) was successfully developed using epicotyl sections obtained from in vitro seedlings. The maximum number of induced shoots (4.3 shoots/explant) and highest shoots frequency (75,56%) was obtained in WPM medium supplemented with TDZ (1 mg/L) and zeatin (0.5 mg/L), whereas the minimum number (0.8 shoots/explant) and lowest shoots frequency (37,78%) was obtained in medium containing TDZ (1 mg/L) and BAP (0.5 mg/L). The highest percentage of rooting (93.3%) was obtained in a medium containing IBA (1 mg/L). These plants were transplanted in a mesh house and achieved a high adaptability to acclimatization, reaching 77% survival. On the other hand, the maximum elongation (height) during this stage was 7.9 cm in plants supplemented with WPM nutrients, whereas it was only 4.38 cm in control plants


Foi desenvolvido com sucesso um protocolo de regeneração para a planta de Mamona (Ricinus communis) utilizando seções de epicótilos, obtidas a partir de mudas in vitro. O número máximo de brotações induzidas (4.3 brotos/explante), assim como a maior frequência de brotações (75,56%), foi obtido em meio WPM suplementado com TDZ (1 mg/L) e zeatina (0,5 mg/L). Enquanto que o número mínimo (0,8 brotos/explante), como a menor freqüência de rebentos (37,78%), foi obtido em meio contendo TDZ (1 mg/L) e BAP (0,5 mg/L). Adicionalmente, a maior percentagem de enraizamento (93,3%) foi obtida em um meio contendo IBA (1 mg/L). Depois da regeneração, as plantas foram transplantadas em casa de vegetação e conseguiram uma alta adaptabilidade e aclimatização, atingindo 77% de sobrevivência. Por outro lado, oalongamento máximo (altura) durante este estágio foi de 7,9 cm em plantas suplementadas com nutrientes de WPM, enquanto as plantas de controle presentaram apenas 4,38 cm


Subject(s)
Ricinus , Organogenesis, Plant , Acclimatization , Biotechnology , Castor Oil
7.
Gene ; 581(2): 107-16, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26802972

ABSTRACT

The complete mitogenome of the potato tuber moth Tecia solanivora (Lepidoptera: Gelechiidae) was sequenced, annotated, characterized and compared with 140 species of the order Lepidoptera. The circular genome is 15,251 bp, containing 37 genes (13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A+T-rich region). The gene arrangement was identical to other lepidopteran mitogenomes but different from the ancestral arrangement found in most insects for the tRNA-Met gene (A+T-region, tRNA-I, tRNA-Q, tRNA-M). The mitogenome of T. solanivora is highly A+T-biased (78.2%) and exhibits negative AT- and GC-skews. All PCGs are initiated by canonical ATN start codons, except for Cytochrome Oxidase subunit 1 (COI), which is initiated by CGA. Most PCGs have a complete typical stop codon (TAA). Only NAD1 has a TAG stop codon and the COII and NAD5 genes have an incomplete stop codon consisting of just a T. The A+T-rich region is 332 bp long and contains common features found in lepidopteran mitogenomes, including the 'ATAGA' motif, a 17 bp poly (T) stretch and a (AT)8 element preceded by the 'ATTTA' motif. Other tandem repeats like (TAA)4 and (TAT)7 were found, as well as (T)6 and (A)10 mononucleotide repeat elements. Finally, this mitogenome has 20 intergenic spacer regions. The phylogenetic relationship of T. solanivora with 28 other lepidopteran families (12 superfamilies) showed that taxonomic classification by morphological features coincides with the inferred phylogeny. Thus, the Gelechiidae family represents a monophyletic group, suggesting that T. solanivora and Pectinophora gossypiella have a recent common ancestor.


Subject(s)
Genome, Mitochondrial , Moths/genetics , Sequence Analysis, DNA/methods , Animals , Evolution, Molecular , Gene Order , Molecular Sequence Annotation , Moths/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...