Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37761248

ABSTRACT

A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.

2.
Diseases ; 11(3)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37489449

ABSTRACT

In the last decade, artificial intelligence (AI) and AI-mediated technologies have undergone rapid evolution in healthcare and medicine, from apps to computer software able to analyze medical images, robotic surgery and advanced data storage system. The main aim of the present commentary is to briefly describe the evolution of AI and its applications in healthcare, particularly in nutrition and clinical biochemistry. Indeed, AI is revealing itself to be an important tool in clinical nutrition by using telematic means to self-monitor various health metrics, including blood glucose levels, body weight, heart rate, fat percentage, blood pressure, activity tracking and calorie intake trackers. In particular, the application of the most common digital technologies used in the field of nutrition as well as the employment of AI in the management of diabetes and obesity, two of the most common nutrition-related pathologies worldwide, will be presented.

3.
Sensors (Basel) ; 21(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34883991

ABSTRACT

Tomato is one of the most essential and consumable crops in the world. Tomatoes differ in quantity depending on how they are fertilized. Leaf disease is the primary factor impacting the amount and quality of crop yield. As a result, it is critical to diagnose and classify these disorders appropriately. Different kinds of diseases influence the production of tomatoes. Earlier identification of these diseases would reduce the disease's effect on tomato plants and enhance good crop yield. Different innovative ways of identifying and classifying certain diseases have been used extensively. The motive of work is to support farmers in identifying early-stage diseases accurately and informing them about these diseases. The Convolutional Neural Network (CNN) is used to effectively define and classify tomato diseases. Google Colab is used to conduct the complete experiment with a dataset containing 3000 images of tomato leaves affected by nine different diseases and a healthy leaf. The complete process is described: Firstly, the input images are preprocessed, and the targeted area of images are segmented from the original images. Secondly, the images are further processed with varying hyper-parameters of the CNN model. Finally, CNN extracts other characteristics from pictures like colors, texture, and edges, etc. The findings demonstrate that the proposed model predictions are 98.49% accurate.


Subject(s)
Solanum lycopersicum , Image Processing, Computer-Assisted , Neural Networks, Computer , Plant Leaves , Plants
4.
Sensors (Basel) ; 21(21)2021 10 23.
Article in English | MEDLINE | ID: mdl-34770338

ABSTRACT

Currently, two-wheelers are the most popular mode of transportation, driven by the majority the people. Research by the World Health Organization (WHO) identifies that most two-wheeler deaths are caused due to not wearing a helmet. However, the advancement in sensors and wireless communication technology empowers one to monitor physical things such as helmets through wireless technology. Motivated by these aspects, this article proposes a wireless personal network and an Internet of Things assisted system for automating the ignition of two-wheelers with authorization and authentication through the helmet. The authentication and authorization are realized with the assistance of a helmet node and a two-wheeler node based on 2.4 GHz RF communication. The helmet node is embedded with three flex sensors utilized to experiment with different age groups and under different temperature conditions. The statistical data collected during the experiment are utilized to identify the appropriate threshold value through a t-test hypothesis for igniting the two-wheelers. The threshold value obtained after the t-test is logged in the helmet node for initiating the communication with the two-wheeler node. The pairing of the helmet node along with the RFID key is achieved through 2.4 GHZ RF communication. During real-time implementation, the helmet node updates the status to the server and LABVIEW data logger, after wearing the helmet. Along with the customization of hardware, a LABVIEW data logger is designed to visualize the data on the server side.


Subject(s)
Wireless Technology , Automation , Cities , Humans , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...