Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 118: 534-540, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32980732

ABSTRACT

Municipal solid waste (MSW) is massively generated all over the world. Its organic fraction (OFMSW), which represents a high percentage of MSW, mainly contains biodegradable materials, namely food waste, paper and garden waste. The social cost of OFMSW treatment and/or disposal is a serious and widespread problem, particularly in highly populated areas. Thus, effective and innovative solutions, which include the upgrading of OFMSW, are being currently sought. In fact, the OFMSW abundance, availability and average composition suggest its considerable potential within the circular economy desideratum, paving the way to valorisation approaches. In this context, an OFMSW sugar-rich hydrolysate and its validation as a substrate for the production of the polyester poly(3-hydroxybutyrate) (P(3HB)), to date the only bioplastic easily biodegradable in marine environment, were successfully obtained in a previous study. Based on those results, this work addresses the upscaling of the fermentative production, in fed-batch mode, of P(3HB) by Burkholderia sacchari. The OFMSW hydrolysate was used as cultivation medium due to its balanced nutrient composition, while a plum waste juice, also rich in sugars, was applied as feed to the bioreactor. By implementing this strategy, a maximum P(3HB) production of 30 g·L-1 with an accumulation of 43% g (P(3HB))/g cell dry weight (CDW) after 51 h, was achieved. The use of the hydrolysate as initial medium resulted in higher CDW (71 g·L-1) than that of the simulated hydrolysate (62 g·L-1 in average), probably because the OFMSW hydrolysate favours biomass growth in detriment of P(3HB) production.


Subject(s)
Prunus domestica , Refuse Disposal , 3-Hydroxybutyric Acid , Bioreactors , Food , Hydroxybutyrates , Solid Waste/analysis
2.
Bioresour Technol ; 290: 121785, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31319213

ABSTRACT

The organic fraction of municipal solid waste was studied as feedstock for the production of poly(3-hydroxybutyrate) (P(3HB)). To release the monosaccharides, a diluted acid pre-treatment followed by an enzymatic hydrolysis was applied. A sugar yield of 49% was achieved using a pre-treated waste and an enzyme cocktail of Pentopan 500 BG and Celluclast BG. The addition of Glucoamylase NS 22035 helped to hydrolyze the starch fraction, improving the hydrolysis yield to 56%. The hydrolysate was used as culture medium to produce P(3HB) by Burkholderia sacchari DSM 17165. Assays at shaking flask scale showed that when the hydrolysate was used as substrate, the attained cell concentration was slightly higher than in the control medium. It was necessary to supplement the hydrolysate with extra glucose to increase the C/N ratio and with a mineral solution to overcome the nutritional deficiencies. The P(3HB) accumulation using the supplemented hydrolysate was 58% (g polymer/g biomass).


Subject(s)
Hydroxybutyrates , Solid Waste , 3-Hydroxybutyric Acid , Polyesters
3.
Carbohydr Res ; 342(18): 2750-6, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-17889843

ABSTRACT

The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h.


Subject(s)
Chitosan/chemistry , Oligosaccharides/biosynthesis , Oligosaccharides/chemistry , Pepsin A/metabolism , Acetylation , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , Pepsin A/economics , Solubility , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...