Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36832882

ABSTRACT

The infrared spectrum of bovine milk is used to predict many interesting traits, whereas there have been few studies on goat milk in this regard. The objective of this study was to characterize the major sources of variation in the absorbance of the infrared spectrum in caprine milk samples. A total of 657 goats belonging to 6 breeds and reared on 20 farms under traditional and modern dairy systems were milk-sampled once. Fourier-transform infrared (FTIR) spectra were taken (2 replicates per sample, 1314 spectra), and each spectrum contained absorbance values at 1060 different wavenumbers (5000 to 930 × cm-1), which were treated as a response variable and analyzed one at a time (i.e., 1060 runs). A mixed model, including the random effects of sample/goat, breed, flock, parity, stage of lactation, and the residual, was used. The pattern and variability of the FTIR spectrum of caprine milk was similar to those of bovine milk. The major sources of variation in the entire spectrum were as follows: sample/goat (33% of the total variance); flock (21%); breed (15%); lactation stage (11%); parity (9%); and the residual unexplained variation (10%). The entire spectrum was segmented into five relatively homogeneous regions. Two of them exhibited very large variations, especially the residual variation. These regions are known to be affected by the absorbance of water, although they also exhibited wide variations in the other sources of variation. The average repeatability of these two regions were 45% and 75%, whereas for the other three regions it was about 99%. The FTIR spectrum of caprine milk could probably be used to predict several traits and to authenticate the origin of goat milk.

3.
G3 (Bethesda) ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33693601

ABSTRACT

In all breeding programs, the decision about which individuals to select and intermate to form the next selection cycle is crucial. The improvement of genetic stocks requires considering multiple traits simultaneously, given that economic value and net genetic merits depend on many traits; therefore, with the advance of computational and statistical tools and genomic selection (GS), researchers are focusing on multi-trait selection. Selection of the best individuals is difficult, especially in traits that are antagonistically correlated, where improvement in one trait might imply a reduction in other(s). There are approaches that facilitate multi-trait selection, and recently a Bayesian decision theory (BDT) has been proposed. Parental selection using BDT has the potential to be effective in multi-trait selection given that it summarizes all relevant quantitative genetic concepts such as heritability, response to selection and the structure of dependence between traits (correlation). In this study, we applied BDT to provide a treatment for the complexity of multi-trait parental selection using three multivariate loss functions (LF), Kullback-Leibler (KL), Energy Score, and Multivariate Asymmetric Loss (MALF), to select the best-performing parents for the next breeding cycle in two extensive real wheat data sets. Results show that the high ranking lines in genomic estimated breeding value (GEBV) for certain traits did not always have low values for the posterior expected loss (PEL). For both data sets, the KL LF gave similar importance to all traits including grain yield. In contrast, the Energy Score and MALF gave a better performance in three of four traits that were different than grain yield. The BDT approach should help breeders to decide based not only on the GEBV per se of the parent to be selected, but also on the level of uncertainty according to the Bayesian paradigm.


Subject(s)
Plant Breeding , Selection, Genetic , Bayes Theorem , Decision Theory , Genomics , Genotype , Humans , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...