Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 830, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280852

ABSTRACT

Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.


Subject(s)
DNA, Mitochondrial , Mitophagy , Humans , Mice , Animals , Aged , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Inflammation/genetics , Inflammation/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Aging/genetics
3.
Prog Retin Eye Res ; 96: 101205, 2023 09.
Article in English | MEDLINE | ID: mdl-37454969

ABSTRACT

Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.


Subject(s)
Mitophagy , Retina , Mice , Animals , Mitophagy/physiology , Retina/metabolism , Retinal Ganglion Cells/metabolism , Autophagy , Mitochondria/metabolism , Homeostasis
4.
Mol Neurobiol ; 60(2): 851-863, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36378469

ABSTRACT

Astrocytes are key glial cells for the metabolic and functional support of the brain. Mitochondrial quality control (MQC), in particular the balance between mitophagy and mitochondrial biogenesis, is a major event for the maintenance of cellular homeostasis. Carbon monoxide (CO) is an endogenous gasotransmitter that inhibits cell death and inflammation by targeting mitochondria. It is well established that CO promotes cytoprotection by increasing mitochondrial population and metabolism (oxidative phosphorylation). Thus, it is hypothesized that CO-induced cytoprotection may also be mediated by the balance between mitophagy and mitochondrial biogenesis. Herein, the carbon monoxide releasing molecule-A1 (CORM-A1) was used in primary cultures of astrocytes to assess CO role on mitochondrial turnover. PINK1/Parkin-dependent mitophagy was stimulated by CORM-A1 following 1 h of treatment. While at 24 h after treatment, CORM-A1 increased mitochondrial population, which may indicate mitochondrial biogenesis. In fact, mitochondrial biogenesis was confirmed by the enhancement of PGC-1α expression that upregulates several mitochondrial transcription factors. Furthermore, inhibition of mitophagy by knocking down PINK1 expression reverted CO-induced mitochondrial biogenesis, indicating that mitochondrial turnover is dependent on modulation of mitophagy. Finally, CORM-A1 prevented astrocytic cell death induced by oxidative stress in a mitophagy-dependent manner. In fact, whenever PINK1 was knocked down, CORM-A1-induced cytoprotection was lost. In summary, CORM-A1 stimulates mitochondrial turnover, which in turn prevents astrocytic cell death. CO cytoprotection depends on increasing mitochondrial population and on eliminating dysfunctional mitochondria.


Subject(s)
Carbon Monoxide , Mitophagy , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Astrocytes/metabolism , Organelle Biogenesis , Oxidative Stress , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
5.
Autophagy ; 19(3): 784-804, 2023 03.
Article in English | MEDLINE | ID: mdl-35875981

ABSTRACT

Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function. While studies of mice lacking essential autophagy genes have revealed a predisposition to retinal degeneration, the consequences of a moderate reduction in autophagy, similar to that which occurs during physiological aging, remain unclear. Here, we described a retinal phenotype consistent with accelerated aging in mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene. These mice showed protein aggregation in the retina and RPE, metabolic underperformance, and premature vision loss. Moreover, Ambra1+/gt mice were more prone to retinal degeneration after RPE stress. These findings indicate that autophagy provides crucial support to RPE-retinal metabolism and protects the retina against stress and physiological aging.Abbreviations : 4-HNE: 4-hydroxynonenal; AMBRA1: autophagy and beclin 1 regulator 1, AMD: age-related macular degeneration;; GCL: ganglion cell layer; GFAP: glial fibrillary acidic protein; GLUL: glutamine synthetase/glutamate-ammonia ligase; HCL: hierarchical clustering; INL: inner nuclear layer; IPL: inner plexiform layer; LC/GC-MS: liquid chromatography/gas chromatography-mass spectrometry; MA: middle-aged; MTDR: MitoTracker Deep Red; MFI: mean fluorescence intensity; NL: NH4Cl and leupeptin; Nqo: NAD(P)H quinone dehydrogenase; ONL: outer nuclear layer; OPL: outer plexiform layer; OP: oscillatory potentials; OXPHOS: oxidative phosphorylation; PCR: polymerase chain reaction; PRKC/PKCα: protein kinase C; POS: photoreceptor outer segment; RGC: retinal ganglion cells; RPE: retinal pigment epithelium; SI: sodium iodate; TCA: tricarboxylic acid.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/genetics , Ecosystem , Haploinsufficiency , Autophagy/genetics , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Adaptor Proteins, Signal Transducing/metabolism
6.
EMBO J ; 41(24): e111115, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36215693

ABSTRACT

Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.


Subject(s)
Macroautophagy , Mitophagy , Mice , Animals , Peroxisomes/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
7.
Autophagy ; 18(2): 293-308, 2022 02.
Article in English | MEDLINE | ID: mdl-34009100

ABSTRACT

Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.


Subject(s)
Autophagy , Stem Cells , Cell Differentiation , Cell Self Renewal , Salivary Glands/physiology
8.
Mol Aspects Med ; 82: 101038, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34620506

ABSTRACT

Autophagy is a fundamental homeostatic pathway that mediates the degradation and recycling of intracellular components. It serves as a key quality control mechanism, especially in non-dividing cells such as neurons. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. The retina is a light-sensitive tissue located in the back of the eye that detects and processes visual images. Vision is a highly demanding process, making the eye one of the most metabolically active tissues in the body and photoreceptors display glycolytic metabolism, even in the presence of oxygen. The retina and eye are also exposed to other stressors that can impair their function, including genetic mutations and age-associated changes. Autophagy, among other pathways, is therefore a key process for the preservation of retinal homeostasis. Here, we review the roles of both canonical and non-canonical autophagy in normal retinal function. We discuss the most recent studies investigating the participation of autophagy in eye diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy and its role protecting photoreceptors in several forms of retinal degeneration. Finally, we consider the therapeutic potential of strategies that target autophagy pathways to treat prevalent retinal and eye diseases.


Subject(s)
Eye Diseases , Retina , Autophagy , Humans , Lysosomes
9.
Cell Stress ; 5(7): 99-118, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34308255

ABSTRACT

Autophagy is a critical cellular process by which biomolecules and cellular organelles are degraded in an orderly manner inside lysosomes. This process is particularly important in neurons: these post-mitotic cells cannot divide or be easily replaced and are therefore especially sensitive to the accumulation of toxic proteins and damaged organelles. Dysregulation of neuronal autophagy is well documented in a range of neurodegenerative diseases. However, growing evidence indicates that autophagy also critically contributes to neurodevelopmental cellular processes, including neurogenesis, maintenance of neural stem cell homeostasis, differentiation, metabolic reprogramming, and synaptic remodelling. These findings implicate autophagy in neurodevelopmental disorders. In this review we discuss the current understanding of the role of autophagy in neurodevelopment and neurodevelopmental disorders, as well as currently available tools and techniques that can be used to further investigate this association.

11.
Int J Mol Sci ; 21(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164182

ABSTRACT

Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.


Subject(s)
Deferiprone/pharmacology , Genes, Reporter , Glaucoma/metabolism , Iron Chelating Agents/pharmacology , Mitochondria/metabolism , Retinal Ganglion Cells/cytology , Animals , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Glaucoma/etiology , Humans , Mice , Mitophagy , Primary Cell Culture , Rats , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism
12.
Autophagy ; 15(7): 1296-1308, 2019 07.
Article in English | MEDLINE | ID: mdl-30786807

ABSTRACT

Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used. Abbreviations: ATG: autophagy related; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; ONH: optic nerve head; ONL: outer nuclear layer; RPE: retinal pigment epithelium.


Subject(s)
Eye/metabolism , Macroautophagy/physiology , Mitophagy/physiology , Animals , Autophagosomes/metabolism , Cell Differentiation/physiology , Ciliary Body/cytology , Ciliary Body/metabolism , Cornea/cytology , Cornea/metabolism , Eye/cytology , Eye/growth & development , Homeostasis/physiology , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Optic Nerve/cytology , Optic Nerve/metabolism , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Retina/cytology , Retina/metabolism
13.
Mol Neurodegener ; 13(1): 19, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661219

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. METHODS: Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. RESULTS: In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3ß expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3ßSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. CONCLUSIONS: These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Retinitis Pigmentosa/pathology , Thiadiazoles/pharmacology , Animals , Apoptosis/drug effects , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retina/drug effects
14.
Cells ; 6(4)2017 Oct 22.
Article in English | MEDLINE | ID: mdl-29065501

ABSTRACT

Autophagy is a catabolic pathway that mediates the degradation and recycling of intracellular components, and is a key player in a variety of physiological processes in cells and tissues. Recent studies of autophagy in the eye suggest that this pathway is fundamental for the preservation of retinal homeostasis. Given its accessible location outside the brain, the retina is an ideal organ in which to study the central nervous system and a wide range of neuronal processes, from development to neurodegeneration. Here we review several methods used to assess autophagy in the retina in both physiological and pathological conditions.

15.
Med Sci (Paris) ; 33(3): 297-304, 2017 Mar.
Article in French | MEDLINE | ID: mdl-28367817

ABSTRACT

The retina is a light-sensitive tissue in the vertebrate eye that detects and processes visual images. The eye, including retina, is exposed to a variety of environmental insults and stressors, among which genetic mutations and age-associated alterations that impair their function. Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components under basal and stress conditions. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. Research has only begun to examine the role of autophagy in the visual system. Here, we review the main studies that have sought to explain autophagy's importance for visual function.


Subject(s)
Autophagy/physiology , Vision, Ocular/physiology , Animals , Humans , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/physiology , Retina/pathology , Retina/physiology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/physiology
16.
J Enzyme Inhib Med Chem ; 32(1): 522-526, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28114834

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Retinitis Pigmentosa/drug therapy , Small Molecule Libraries/pharmacology , Animals , Cell Death/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/metabolism , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
17.
Prog Retin Eye Res ; 55: 206-245, 2016 11.
Article in English | MEDLINE | ID: mdl-27566190

ABSTRACT

Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye.


Subject(s)
Aging/physiology , Autophagy/physiology , Eye Diseases/pathology , Retina/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...