Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602775

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Subject(s)
Diterpenes , Epoxy Compounds , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Phenanthrenes , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Animals , Mice , Hematopoietic Stem Cell Transplantation/methods , Diterpenes/pharmacology , Diterpenes/therapeutic use , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Humans , Transplantation, Homologous , Female , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Disease Models, Animal , Graft vs Leukemia Effect/drug effects , Mice, Inbred C57BL , Male
2.
Mol Ther Oncolytics ; 30: 286-300, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732296

ABSTRACT

Esophageal adenocarcinoma (EAC) patients have poor clinical outcomes, with an overall 5-year survival rate of 20%. Smoking is a significant risk factor for EAC. The role of WEE1, a nuclear kinase that negatively regulates the cell cycle in normal conditions, in EAC tumorigenesis and drug resistance is not fully understood. Immunohistochemistry staining shows significant WEE1 overexpression in human EAC tissues. Nicotine, nicotine-derived nitrosamine ketone, or 2% cigarette smoke extract treatment induces WEE1 protein expression in EAC, detected by western blot and immunofluorescence staining. qRT-PCR and reporter assay indicates that smoking induces WEE1 expression through miR-195-5p downregulation in EAC. ATP-Glo cell viability and clonogenic assay confirmed that WEE1 inhibition sensitizes EAC cells to docetaxel treatment in vitro. A TE-10 smoking machine with EAC patient-derived xenograft mouse model demonstrated that smoking induces WEE1 protein expression and resistance to docetaxel in vivo. MK-1775 and docetaxel combined treatment improves EAC patient-derived xenograft mouse survival in vivo. Our findings demonstrate, for the first time, that smoking-induced WEE1 overexpression through miRNA dysregulation in EAC plays an essential role in EAC drug resistance. WEE1 inhibition is a promising therapeutic method to overcome drug resistance and target treatment refractory cancer cells.

3.
Front Immunol ; 14: 1212190, 2023.
Article in English | MEDLINE | ID: mdl-37559725

ABSTRACT

Infection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with Toxoplasma gondii. Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production. We also find that, unlike STAT1, STAT3 is not required for induction of IL-10 or suppression of IL-13 during acute toxoplasmosis. Each of these findings was confirmed in vitro and ChIP-seq data mining showed that STAT1 and STAT3 co-localize at the Il10 locus, as well as loci encoding other transcription factors that regulate IL-10 production, most notably Maf and Irf4. These data advance basic understanding of how infection-induced T cell responses are managed to prevent immuno-pathology and provide specific insights on the anti-inflammatory properties of STAT1, highlighting its role in shaping the character of Th1-type responses.

4.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Article in English | MEDLINE | ID: mdl-37443284

ABSTRACT

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Cell Differentiation , Central Nervous System , Mice, Inbred C57BL , Neuroinflammatory Diseases , Th1 Cells , Th17 Cells , Transcription Factors , Virulence , Humans
5.
Eur J Immunol ; 53(6): e2048825, 2023 06.
Article in English | MEDLINE | ID: mdl-37009861

ABSTRACT

T cells adapt their metabolism to meet the energetic and biosynthetic demands imposed by changes in location, behavior, and/or differentiation state. Many of these adaptations are controlled by cytokines. Traditionally, research on the metabolic properties of cytokines has focused on downstream signaling via the PI3K-AKT, mTOR, or ERK-MAPK pathways but recent studies indicate that JAK-STAT is also crucial. This review synthesizes current thinking on how JAK-STAT signaling influences T cell metabolism, focusing on adaptations necessary for the naïve, effector, regulatory, memory, and resident-memory states. The overarching theme is that JAK-STAT has both direct and indirect effects. Direct regulation involves STATs localizing to and instructing expression of metabolism-related genes. Indirect regulation involves STATs instructing genes encoding upstream or regulatory factors, including cytokine receptors and other transcription factors, as well as non-canonical JAK-STAT activities. Cytokines impact a vast range of metabolic processes. Here, we focus on those that are most prominent in T cells; lipid, amino acid, and nucleotide synthesis for anabolic metabolism, glycolysis, glutaminolysis, oxidative phosphorylation, and fatty acid oxidation for catabolic metabolism. Ultimately, we advocate the idea that JAK-STAT is a key node in the complex network of signaling inputs and outputs which ensure that T cell metabolism meets lifestyle demands.


Subject(s)
Phosphatidylinositol 3-Kinases , T-Lymphocytes , Phosphatidylinositol 3-Kinases/metabolism , T-Lymphocytes/metabolism , Signal Transduction/physiology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Cytokines/metabolism , Janus Kinases/metabolism
6.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36946782

ABSTRACT

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Neutrophils , Receptors, Tumor Necrosis Factor, Type II/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Inflammation/genetics , Tumor Microenvironment/physiology , Chemokine CXCL1/genetics , Pancreatic Neoplasms
7.
Sci Immunol ; 7(77): eabl9467, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36427325

ABSTRACT

Activated lymphocytes adapt their metabolism to meet the energetic and biosynthetic demands imposed by rapid growth and proliferation. Common gamma chain (cγ) family cytokines are central to these processes, but the role of downstream signal transducer and activator of transcription 5 (STAT5) signaling, which is engaged by all cγ members, is poorly understood. Using genome-, transcriptome-, and metabolome-wide analyses, we demonstrate that STAT5 is a master regulator of energy and amino acid metabolism in CD4+ T helper cells. Mechanistically, STAT5 localizes to an array of enhancers and promoters for genes encoding essential enzymes and transporters, where it facilitates p300 recruitment and epigenetic remodeling. We also find that STAT5 licenses the activity of two other key metabolic regulators, the mTOR signaling pathway and the MYC transcription factor. Building on the latter, we present evidence for transcriptome-wide cooperation between STAT5 and MYC in both normal and transformed T cells. Together, our data provide a molecular framework for transcriptional programing of T cell metabolism downstream of cγ cytokines and highlight the JAK-STAT pathway in mediating cellular growth and proliferation.


Subject(s)
Janus Kinases , STAT5 Transcription Factor , STAT5 Transcription Factor/genetics , Signal Transduction , STAT Transcription Factors , T-Lymphocytes, Helper-Inducer , Cytokines
8.
Proc Natl Acad Sci U S A ; 119(17): e2106083119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35446623

ABSTRACT

CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.


Subject(s)
MicroRNAs , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/metabolism , Persistent Infection
9.
Cell Rep ; 37(2): 109804, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644563

ABSTRACT

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


Subject(s)
CD8-Positive T-Lymphocytes/enzymology , Chromatin Assembly and Disassembly , Chromatin/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Immunologic Memory , Primary Immunodeficiency Diseases/enzymology , Transcription, Genetic , Virus Diseases/enzymology , Adolescent , Adult , Animals , Apoptosis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Case-Control Studies , Child , Chromatin/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Disease Models, Animal , Enzyme Activation , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology
10.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34507993

ABSTRACT

Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.


Subject(s)
Cell Movement/physiology , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cytokines/metabolism , Female , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , STAT3 Transcription Factor/physiology , Signal Transduction/drug effects
11.
Cell Rep ; 33(11): 108498, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326784

ABSTRACT

Natural killer (NK) cells are innate lymphocytes with the capacity to elicit adaptive features, including clonal expansion and immunological memory. Because signal transducer and activator of transcription 5 (STAT5) is essential for NK cell development, the roles of this transcription factor and its upstream cytokines interleukin-2 (IL-2) and IL-15 during infection have not been carefully investigated. In this study, we investigate how STAT5 regulates transcription during viral infection. We demonstrate that STAT5 is induced in NK cells by IL-12 and STAT4 early after infection and that partial STAT5 deficiency results in a defective capacity of NK cells to generate long-lived memory cells. Furthermore, we find a functional dichotomy of IL-2 and IL-15 signaling outputs during viral infection, whereby both cytokines drive clonal expansion, but only IL-15 is required for memory NK cell survival. We thus highlight a role for STAT5 signaling in promoting an optimal anti-viral NK cell response.


Subject(s)
Killer Cells, Natural/metabolism , STAT5 Transcription Factor/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
12.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33010223

ABSTRACT

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/immunology , Killer Cells, Natural/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/immunology
13.
Article in English | MEDLINE | ID: mdl-33028646

ABSTRACT

Mismatch repair-deficient (dMMR) cancers generate a substantial number of immunogenic neoantigens, rendering them sensitive to immunotherapy. Yet, there is considerable variability in responses, and roughly one-half of dMMR cancers are refractory to immunotherapy. Here we study a patient with dMMR lung cancer refractory to immunotherapy. The tumor exhibited typical dMMR molecular features, including exceptionally high frameshift insertions and deletions (indels). Despite the treatment inducing abundant intratumoral T-cell infiltrates, it failed to elicit tumor regression, pointing to the T cells lacking cytotoxic activity. A post-treatment tumor demonstrated compound heterozygous frameshift deletions located upstream of the kinase domain in the gene encoding JAK1 protein, down-regulation of JAK1 and mediators of its signal transduction, and total loss of JAK1 phosphorylation. Importantly, one of the JAK1 mutations, despite not being detected in the pretreatment tumor, was found at low variant allele frequency in the pretreatment circulating tumor DNA, suggesting clonal selection of the mutation. To our knowledge, this report provides the most detailed look yet at defective JAK1 signaling in the context of dMMR and immunotherapy resistance. Together with observations of JAK1 frameshift indels being enriched in dMMR compared with MMR-proficient tumors, our findings demonstrate the critical function of JAK1 in immunological surveillance of dMMR cancer.


Subject(s)
Janus Kinase 1/genetics , MutL Protein Homolog 1/genetics , Neoplasms/metabolism , Biomarkers, Tumor/genetics , DNA Mismatch Repair/genetics , DNA Mismatch Repair/physiology , Female , Genomics , Humans , Immunity/immunology , Immunotherapy/methods , Janus Kinase 1/metabolism , Microsatellite Instability , Middle Aged , MutL Protein Homolog 1/metabolism , Mutation
14.
iScience ; 23(7): 101310, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32634740

ABSTRACT

Hybrid Th1/Tfh cells (IFN-γ+IL-21+CXCR5+) predominate in response to several persistent infections. In Plasmodium chabaudi infection, IFN-γ+ T cells control parasitemia, whereas antibody and IL-21+Bcl6+ T cells effect final clearance, suggesting an evolutionary driver for the hybrid population. We found that CD4-intrinsic Bcl6, Blimp-1, and STAT3 coordinately regulate expression of the Th1 master regulator T-bet, supporting plasticity of CD4 T cells. Bcl6 and Blimp-1 regulate CXCR5 levels, and T-bet, IL-27Rα, and STAT3 modulate cytokines in hybrid Th1/Tfh cells. Infected mice with STAT3 knockout (KO) T cells produced less antibody and more Th1-like IFN-γ+IL-21-CXCR5lo effector and memory cells and were protected from re-infection. Conversely, T-bet KO mice had reduced Th1-bias upon re-infection and prolonged secondary parasitemia. Therefore, each feature of the CD4 T cell population phenotype is uniquely regulated in this persistent infection, and the cytokine profile of memory T cells can be modified to enhance the effectiveness of the secondary response.

15.
Cell ; 181(7): 1696-1696.e1, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589961

ABSTRACT

The JAK-STAT pathway is an evolutionarily conserved signal transduction paradigm, providing mechanisms for rapid receptor-to-nucleus communication and transcription control. Discoveries in this field provided insights into primary immunodeficiencies, inherited autoimmune and autoinflammatory diseases, and hematologic and oncologic disorders, giving rise to a new class of drugs, JAK inhibitors (or Jakinibs).


Subject(s)
Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Animals , Cell Membrane/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Janus Kinases/genetics , Janus Kinases/physiology , STAT Transcription Factors/genetics , STAT Transcription Factors/physiology , Signal Transduction/physiology
16.
Sci Immunol ; 5(46)2020 04 24.
Article in English | MEDLINE | ID: mdl-32332067

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins have critical roles in the development and function of immune cells. STAT signaling is often dysregulated in patients with inflammatory bowel disease (IBD), suggesting the importance of STAT regulation during the disease process. Moreover, genetic alterations in STAT3 and STAT5 (e.g., deletions, mutations, and single-nucleotide polymorphisms) are associated with an increased risk for IBD. In this study, we elucidated the precise roles of STAT5 signaling in group 3 innate lymphoid cells (ILC3s), a key subset of immune cells involved in the maintenance of gut barrier integrity. We show that mice lacking either STAT5a or STAT5b are more susceptible to Citrobacter rodentium-mediated colitis and that interleukin-2 (IL-2)- and IL-23-induced STAT5 drives IL-22 production in both mouse and human colonic lamina propria ILC3s. Mechanistically, IL-23 induces a STAT3-STAT5 complex that binds IL-22 promoter DNA elements in ILC3s. Our data suggest that STAT5a/b signaling in ILC3s maintains gut epithelial integrity during pathogen-induced intestinal disease.


Subject(s)
Colitis/immunology , Interleukin-23/immunology , Interleukin-2/immunology , Interleukins/biosynthesis , STAT5 Transcription Factor/immunology , Animals , Interleukins/immunology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT3 Transcription Factor/immunology , Interleukin-22
17.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31377117

ABSTRACT

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Subject(s)
Gene Expression Regulation/immunology , Immunologic Memory , Infections/immunology , Interferon-gamma/immunology , RNA, Untranslated/immunology , T-Lymphocytes/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Knockdown Techniques , Infections/genetics , Infections/pathology , Interferon-gamma/genetics , Mice , RNA, Untranslated/genetics , T-Lymphocytes/pathology
18.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29358051

ABSTRACT

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Subject(s)
Adaptive Immunity , Bacteria/immunology , Histocompatibility Antigens Class I/immunology , Microbiota/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/genetics , Mice , Mice, Transgenic
19.
J Immunol ; 200(1): 110-118, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29187589

ABSTRACT

Understanding the control of Ag restimulation-induced T cell death (RICD), especially in cancer immunotherapy, where highly proliferating T cells will encounter potentially large amounts of tumor Ags, is important now more than ever. It has been known that growth cytokines make T cells susceptible to RICD, but the precise molecular mediators that govern this in T cell subsets is unknown until now. STAT proteins are a family of transcription factors that regulate gene expression programs underlying key immunological processes. In particular, STAT5 is known to favor the generation and survival of memory T cells. In this study, we report an unexpected role for STAT5 signaling in the death of effector memory T (TEM) cells in mice and humans. TEM cell death was prevented with neutralizing anti-IL-2 Ab or STAT5/JAK3 inhibitors, indicating that STAT5 signaling drives RICD in TEM cells. Moreover, we identified a unique patient with a heterozygous missense mutation in the coiled-coil domain of STAT5B that presented with autoimmune lymphoproliferative syndrome-like features. Similar to Stat5b-/- mice, this patient exhibited increased CD4+ TEM cells in the peripheral blood. The mutant STAT5B protein dominantly interfered with STAT5-driven transcriptional activity, leading to global downregulation of STAT5-regulated genes in patient T cells upon IL-2 stimulation. Notably, CD4+ TEM cells from the patient were strikingly resistant to cell death by in vitro TCR restimulation, a finding that was recapitulated in Stat5b-/- mice. Hence, STAT5B is a crucial regulator of RICD in memory T cells in mice and humans.


Subject(s)
Apoptosis , Autoimmune Lymphoproliferative Syndrome/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Survival , STAT5 Transcription Factor/metabolism , Animals , Antibodies, Neutralizing/metabolism , Autoimmune Lymphoproliferative Syndrome/genetics , Cells, Cultured , Female , Humans , Immunologic Memory , Interleukin-2/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation, Missense/genetics , STAT5 Transcription Factor/genetics , Signal Transduction , Transcription, Genetic
20.
JCI Insight ; 2(22)2017 11 16.
Article in English | MEDLINE | ID: mdl-29202461

ABSTRACT

IL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expression resulting in an IL-7-dependent STAT1 and STAT5 activation. Consequently, the IL-7-induced transcriptome is altered with enrichment of IFN-stimulated genes (ISGs). Moreover, STAT1 overexpression was associated with reduced survival in CD4+ T cells undergoing lymphopenia-induced proliferation (LIP). We propose a model in which T cells undergoing LIP upregulate STAT1 protein, "switching on" an alternate IL-7-dependent program. This mechanism could be a physiological process to regulate the expansion and size of the CD4+ T cell pool. During HIV infection, the virus could exploit this pathway, leading to the homeostatic dysregulation of the T cell pools observed in these patients.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Homeostasis/drug effects , Interleukin-7/metabolism , Interleukin-7/pharmacology , STAT1 Transcription Factor/drug effects , STAT1 Transcription Factor/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Cell Size/drug effects , Gene Expression Regulation/drug effects , HIV Infections , Humans , Lymphocyte Activation , Lymphopenia , Mice , Mice, Knockout , Phosphorylation , STAT1 Transcription Factor/genetics , STAT5 Transcription Factor/adverse effects , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...