Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Neurodegener ; 5: 44, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21034469

ABSTRACT

BACKGROUND: Apolipoprotein E (apoE) is a major cholesterol transport protein found in association with brain amyloid from Alzheimer's disease (AD) patients and the ε4 allele of apoE is a genetic risk factor for AD. Previous studies have shown that apoE forms a stable complex with amyloid ß (Aß) peptides in vitro and that the state of apoE lipidation influences the fate of brain Aß, i.e., lipid poor apoE promotes Aß aggregation/deposition while fully lipidated apoE favors Aß degradation/clearance. In the brain, apoE levels and apoE lipidation are regulated by the liver X receptors (LXRs). RESULTS: We investigated the hypothesis that increased apoE levels and lipidation induced by LXR agonists facilitates Aß efflux from the brain to the cerebral spinal fluid (CSF). We also examined if the brain expression of major apoE receptors potentially involved in apoE-mediated Aß clearance was altered by LXR agonists. ApoE, cholesterol, Aß40, and Aß42 levels were all significantly elevated in the CSF of rats after only 3 days of treatment with LXR agonists. A significant reduction in soluble brain Aß40 levels was also detected after 6 days of LXR agonist treatment. CONCLUSIONS: Our novel findings suggest that central Aß lowering caused by LXR agonists appears to involve an apoE/cholesterol-mediated transport of Aß to the CSF and that differences between the apoE isoforms in mediating this clearance pathway may explain why individuals carrying one or two copies of APOE ε4 have increased risk for AD.

2.
Exp Neurol ; 223(2): 394-400, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19744481

ABSTRACT

Amyloid plaque deposition in the brain is a hallmark of Alzheimer's disease, but recent evidence indicates that the disease may be primarily caused by soluble amyloid-beta (1-42) (Abeta) oligomers or Abeta-derived diffusible ligands (ADDLs). ADDLs induce cognitive deficits in animal models and are thought to assemble in vitro by a mechanism apart from plaque formation. To investigate the in vivo relationship of ADDLs and plaques, biotin-labeled ADDLs (bADDLs) or amylin oligomers (bAMs) were injected into the hippocampus of hAPP overexpressing mice. The brains were collected 1 or 5 weeks after the last treatment and were processed for immunohistochemistry. Staining of tissue 1 week post-treatment showed bADDLs had diffused throughout the tissue and incorporated into plaques. Additionally, small deposits of thioflavin S-negative bADDLs were observed. At 5 weeks post-treatment, thioflavin S-positive material continued to accumulate around plaques containing bADDLs. Thioflavin S-positive material also accrued around bADDL deposits, implying that bADDLs were capable of seeding new plaques. In contrast, bAMs cleared from the brain and did not accumulate in plaques. Together, these data indicate that ADDLs are able to contribute to in vivo plaque formation in a peptide-specific manner.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Peptide Fragments/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid/chemistry , Amyloid/genetics , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Animals , Benzothiazoles , Biotin , Disease Models, Animal , Humans , Immunohistochemistry , Islet Amyloid Polypeptide , Ligands , Male , Mice , Mice, Transgenic , Microscopy, Atomic Force , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/genetics , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...