Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemotherapy ; 67(2): 102-109, 2022.
Article in English | MEDLINE | ID: mdl-34839283

ABSTRACT

BACKGROUND: The synthesis and biological evaluation of 1,4-naphthoquinone derivatives are of great interest since these compounds exhibit strong antibacterial, antifungal, antimalarial, and anticancer activities. The electronic properties of naphthoquinones are usually modulated by attaching functional groups containing nitrogen, oxygen, and sulfur atoms, which tune their biological potency and selectivity. METHODS: A series of 13 amino acid 1,4-naphthoquinone derivatives was synthesized under assisted microwave and ultrasound conditions. The antibacterial activity of compounds was tested against American Type Culture Collection (ATCC): Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis, as well as 2 multidrug resistant pathogens: E. coli and S. aureus from clinical isolated. Minimal inhibitory concentration (MIC) was determined using the broth microdilution method. RESULTS: MIC of derivatives 4-11, 14, and 16 showed antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrobial activities of the compounds 4-8 and 14 were ≤MIC 24.7 µg mL-1 against all the reference strains; even more, compound 6 showed the most potent activity with an MIC of 3.9 µg mL-1 on S. aureus. On the clinical isolated, the compounds 7, 8, and 14 showed an MIC of 49.7 and 24.7 µg mL-1 against S. aureus and E. coli, respectively. About ADME properties and Osiris analysis, the compounds 4-16 presented high gastrointestinal absorption and good characteristics for oral bioavailability, and compound 14 was the less toxic. CONCLUSION: Amino acid 1,4-naphthoquinone derivatives showed good in vitro antibacterial activity against clinical strains, and modifications on C-3 with a chloride atom enhanced the efficiency against the same pathogens.


Subject(s)
Anti-Infective Agents , Naphthoquinones , Amino Acids/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Staphylococcus aureus
2.
Sci Total Environ ; 816: 151661, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34780823

ABSTRACT

Nowadays, water pollution represents a great concern due to population growth, industrialization, and urbanization. Every day hazardous chemical products for humans and aquatic organisms are disposed of arbitrarily from homes and industries. Even though detergents are considered an essential market, there is evidence of environmental impacts caused by surfactants like nonylphenol ethoxylate (NPE) and linear alkylbenzene sulfonates (LAS). Regulations about maximum allowable concentrations in sewage, surface water, and drinking water are scarce or null, mostly in developing countries like Latin American countries. Therefore, this review explores these two common toxic surfactants (NPE and LAS) and proposes a technological, innovative, and ecological perspective on detergents. Also, it establishes a starting point for industries to minimize adverse effects on humans and environmental health caused by these compounds.


Subject(s)
Alkanesulfonic Acids , Water Pollutants, Chemical , Ecotoxicology , Environmental Health , Humans , Latin America , Sewage , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...