Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
EFSA J ; 20(Suppl 2): e200906, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531275

ABSTRACT

Pesticides residues can occur in ground and surface waters, and potentially react with chemicals used for water disinfection treatments, such as chlorine. This can lead to the formation of unknown reaction products, which can be more toxic and/or persistent than the active substances themselves, and therefore become a potential risk for human health and environment. Thus, in the framework of the EU Regulation 1107/2009, the identification of these by-products and their potential risk should be assessed. Within the European Food Risk Assessment (EU-FORA) Fellowship Programme, the fellow studied the behaviour of herbicides belonging to the families of imidazolinones and sulfonylureas in waters treated with chlorine disinfectants. Due to their physicochemical properties, these herbicides are susceptible of reaching natural waters. In fact, some of them have been detected in water monitoring programmes. During the experimental part of the present work programme, reactions between the active substances and the most used chlorine disinfecting reactants (hypochlorite and chloramines) were performed. Degradation kinetic parameters such as half-lives and degradation constants were calculated. Results showed that herbicide degradation was both pH and chlorine/chloramines concentration dependent. In order to identify the degradation by-products, high-resolution mass spectrometry experiments were performed, and a possible route of formation of these compounds was proposed. Finally, their risk assessment was carried out by using tox/ecotoxicological properties determined by QSAR methodology and FOCUS modelling for hazard and exposure assessment, respectively. These results will contribute to the definition of a risk assessment scheme for pesticides by-products potentially occurring in drinking water.

2.
Sci Total Environ ; 839: 156000, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35597336

ABSTRACT

Any active substance with phytosanitary capacity intended to be marketed in Europe must pass exhaustive controls to assess its risk before being marketed and used in European agriculture. Since the implementation of Regulation (EC) No 1107/2009, agrochemical companies have been obliged to study the formation of pesticide transformation products (TPs) during the treatment of drinking water containing pesticide residues. However, there is no consensus on how to address this requirement. In this research work, the open literature collection on alloxydim was used to propose potential chlorination paths from alloxydim isomers. Furthermore, several QSAR/QSPR models have been used to fill the of knowledge gap relative to some key parameters in the physico-chemical, environmental and ecotoxicological areas of potential alloxydim TPs from chlorinated water for which little information exists. In this way, it has been possible to estimate the state of aggregation of these TPs (they exist mainly as liquids) as well as their ease of transit between the different phases, to predict their possible behaviour in the three environmental compartments (e.g., thermophysical properties point to a change in their evolution with respect to the parent alloxydim isomers) and to anticipate their potential risk to human and animal health (e.g., all of them cause developmental toxicity). These and other results highlight that the hazards of several TPs, i.e., both chlorinated and nonchlorinated from parent alloxydim or from those obtained after cleavage of the N - O bond and the subsequent reaction with chlorine, should be seriously considered. The obtained results reopen the debate on the implications of the use of QSAR/QSPR models for pesticide risk assessment in the legislative framework.


Subject(s)
Drinking Water , Pesticides , Water Pollutants, Chemical , Water Purification , Animals , Chlorine/chemistry , Drinking Water/chemistry , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/analysis , Water Purification/methods
3.
Molecules ; 23(8)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103524

ABSTRACT

Assessment of two buffered QuEChERS (quick, easy, cheap, effective, rugged, and safe) versions (i.e., citrate and acetate) modified by including methanol to recover the residues of three cyclohexanedione oxime (CHD) herbicides and three of their byproducts from agricultural soil was performed. In this context, a full second-order face-centered factorial experimental design was developed to quantify the influences of the main five variables (i.e., extraction time, water content, soil weight, and extraction solvent volume and composition) on the target compound recoveries. The fitting equations satisfactorily described the extraction process behavior. The mathematical models also showed the most influencing independent variables (i.e., extraction solvent composition and soil weight). Handling simpler expressions was possible with the acetate QuEChERS but not with the citrate QuEChERS. The recoveries of the CHD residues were close to 100% after performing the extraction under suitable conditions. Furthermore, dispersive solid-phase extraction (dSPE) clean-up steps were assessed to reduce the matrix effect in mass spectrometry. In this sense, the citrate QuEChERS in combination with the PSA + C18 clean-up step was the best option for the extraction of CHD residues.


Subject(s)
Chemical Fractionation , Herbicides/chemistry , Pesticide Residues/analysis , Soil/chemistry , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Molecular Structure , Solvents
4.
Sci Total Environ ; 634: 1530-1539, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710651

ABSTRACT

The European market for pesticides is currently legislated through the well-developed Regulation (EC) No. 1107/2009. This regulation promotes the competitiveness of European agriculture, recognizing the necessity of safe pesticides for human and animal health and the environment to protect crops against pests, diseases and weeds. In this sense, nanotechnology can provide a tremendous opportunity to achieve a more rational use of pesticides. However, the lack of information regarding nanopesticides and their fate and behavior in the environment and their effects on human and animal health is inhibiting rapid nanopesticide incorporation into European Union agriculture. This review analyzes the recent state of knowledge on nanopesticide risk assessment, highlighting the challenges that need to be overcame to accelerate the arrival of these new tools for plant protection to European agricultural professionals. Novel nano-Quantitative Structure-Activity/Structure-Property Relationship (nano-QSAR/QSPR) tools for risk assessment are analyzed, including modeling methods and validation procedures towards the potential of these computational instruments to meet the current requirements for authorization of nanoformulations. Future trends on these issues, of pressing importance within the context of the current European pesticide legislative framework, are also discussed. Standard protocols to make high-quality and well-described datasets for the series of related but differently sized nanoparticles/nanopesticides are required.

5.
Sci Total Environ ; 615: 643-651, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28992491

ABSTRACT

The photochemical fate of the herbicide clethodim in natural waters was investigated under simulated and natural sunlight radiation. This herbicide exhibited a rapid degradation rate in simulated aquatic environment with half-lives ranged from 27.9min to 4.6h. The commercial formulation of clethodim showed a faster degradation with half-lives from 19.3min to 1.4h. It has also been demonstrated that the photolytic behavior of clethodim was affected by the water composition and the radiation intensity. Nine major photoproducts were identified and their distribution was dependent on the experimental conditions. Photodegraded solutions of clethodim were shown to be more toxic to the bacteria Vibrio fischeri than the herbicide itself, reaching the maximum toxicity when the herbicide is completely degraded. QSAR analysis of the fate, ecotoxicological and physicochemical endpoints of the degradation products provided positive alerts for several identified by-products. Environmental fate and transport estimates showed that all photoproducts, unlike the active substance, are potential leachers. Moreover, predicted vapor pressures suggested that dermal contact and ingestion are the most probable exposure routes for workers and general population to both clethodim and its photoproducts. These results highlight the importance of the degradation products in attaining a complete knowledge of the fate and behavior of an herbicide in the environment. To our knowledge, this is the first study to report a detailed QSAR study on clethodim photoproducts under environmental conditions. These results provide a very valuable information that will guide further experimental studies leading to a better pesticide risk assessment.


Subject(s)
Cyclohexanones/chemistry , Herbicides/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Aliivibrio fischeri/drug effects , Quantitative Structure-Activity Relationship , Sunlight , Toxicity Tests
7.
J Mass Spectrom ; 47(2): 163-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22359325

ABSTRACT

This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Lipid Peroxides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Lipid Peroxidation , Phenols , Sulfoxides , Xylenes/chemistry
8.
J Agric Food Chem ; 58(14): 8279-85, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20593898

ABSTRACT

The behavior of Miscanthus x giganteus bark lipophilic extractives during three acid organosolv pulping processes (Acetosolv, formic acid fractionation, and Milox) was investigated. It was demonstrated that nearly 90% of the lipophilic extractives were removed from pulps by either dissolution in the organosolv liquors (fatty acids and alcohols) or extensive degradation (sterols). The organosolv liquors were found to be rich in vanillin, syringaldehyde, and ferulic, vanillic, and p-coumaric acids. The Acetosolv fractionation process was found to be the most efficient in the removal of lipophilic components from pulps, and it was also the process that generated higher amounts of valuable monomeric phenolic compounds that could be exploited within the biorefinery context.


Subject(s)
Phenols/isolation & purification , Plant Extracts/isolation & purification , Poaceae/chemistry , Chemical Fractionation , Phenols/analysis , Plant Bark/chemistry , Plant Extracts/analysis
9.
J Agric Food Chem ; 57(14): 6262-70, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19552425

ABSTRACT

Milled wood lignin (MWL) and acetic and formic acid lignin (AL and FL) from Miscanthus x giganteus bark were produced, respectively, before and after organosolv fractionations under optimal conditions, in terms of organic and hydrochloric acid concentrations, liquid/wood ratio, and reaction time. In order to study the M. x giganteus native lignin structure and its modifications during the fractionation process, the lignins were studied by two-dimensional heteronuclear single quantum coherence (2D-(HSQC)), (13)C- and (31)P nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR), size-exclusion chromatography (SEC) both before and after thioacidolysis, and elemental analysis. In addition, chemical composition analysis was performed on ash, Klason lignin, and carbohydrate content. The analyses demonstrated that M. x giganteus native lignin (MWL) is highly acylated at the C(gamma) of the lignin side chain (46%), possibly with p-coumarate and/or acetate groups. This is newsworthy since several earlier studies showed that acylation at the gamma-carbon commonly occurs in C(3) and CAM grasses, whereas M. x giganteus is a C(4) grass. Furthermore, M. x giganteus showed a low S/G ratio (0.7) and a predominance of beta-O-4' linkages (up to 93% of all linkages). AL and FL lose part of these linkages during organosolv fractionation (up to 21 and 32%, respectively). The p-coumarate groups resist fractionation processes and are still present in high quantities in AL and FL. During the fractionation process, lignin is acetylated (acetic acid process) and condensed, with the G units condensing more than S units. M. x giganteus MWL contains a high content of carbohydrates (22.8%), suggesting that it is a lignin-carbohydrate complex (LCC). AL and FL showed low carbohydrate contents because of the breaking down of the LCC structures. AL and FL have high molecular weights and low polydispersities, and are high in phenolic content, qualities that make these suitable for different applications. These results suggest that refinement of M. x giganteus via organosolv processes could potentially turn this grass into a valuable source of both fiber and lignin.


Subject(s)
Acetic Acid , Formates , Lignin/chemistry , Lignin/isolation & purification , Poaceae/chemistry , Acetylation , Chemical Fractionation , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Wood/chemistry
10.
Bioresour Technol ; 100(20): 4731-5, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19477118

ABSTRACT

Miscanthus x giganteus bark samples subjected to fractionation by the Acetosolv process under optimal conditions were bleached using hydrogen peroxide and acetic acid in aqueous media under alkaline conditions. The influence of the main operational variables in the bleaching of Acetosolv pulps of M. x giganteus (i.e. hydrogen peroxide concentration, 3-7%; temperature, 55-75 degrees C; pH 9-11), obtained after treatments, have been assessed on pulp yield, kappa number, viscosity and brightness of bleached pulps. For this purpose, a rotatable and orthogonal second-order factorial design of experiments was used, in order to identify the optimum operating conditions. The obtained empirical mathematical models demonstrate that, in general, the bleaching was efficient, achieving pulps with kappa numbers below 10. The chemical composition and physicochemical properties of the bleached pulps fulfilled the requirements for forthcoming bleaching stages. Moreover, an alkaline extraction stage to eliminate saponifiable groups of Acetosolv pulps was studied, as well as the necessity of use chelating agents in the stage with hydrogen peroxide.


Subject(s)
Acetic Acid/chemistry , Biotechnology/methods , Crosses, Genetic , Hydrogen Peroxide/chemistry , Paper , Poaceae/chemistry , Hydrogen-Ion Concentration , Pentetic Acid/chemistry , Regression Analysis , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...