Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1135487, 2023.
Article in English | MEDLINE | ID: mdl-37051516

ABSTRACT

Different Bacillus species have successfully been used as biopesticides against a broad range of plant pathogens. Among these, Bacillus tequilensis EA-CB0015 has shown to efficiently control Black sigatoka disease in banana plants, presumably by mechanisms of adaptation that involve modifying the phyllosphere environment. Here, we report the complete genome of strain EA-CB0015, its precise taxonomic identity, and determined key genetic features that may contribute to its effective biocontrol of plant pathogens. We found that B. tequilensis EA-CB0015 harbors a singular 4 Mb circular chromosome, with 3,951 protein-coding sequences. Multi-locus sequence analysis (MLSA) and average nucleotide identity (ANI) analysis classified strain EA-CB0015 as B. tequilensis. Encoded within its genome are biosynthetic gene clusters (BGCs) for surfactin, iturin, plipastatin, bacillibactin, bacilysin, subtilosin A, sporulation killing factor, and other natural products that may facilitate inter-microbial warfare. Genes for indole-acetic acid (IAA) synthesis, the use of diverse carbon sources, and a multicellular lifestyle involving motility, biofilm formation, quorum sensing, competence, and sporulation suggest EA-CB0015 is adept at colonizing plant surfaces. Defensive mechanisms to survive invading viral infections and preserve genome integrity include putative type I and type II restriction modification (RM) and toxin/antitoxin (TA) systems. The presence of bacteriophage sequences, genomic islands, transposable elements, virulence factors, and antibiotic resistance genes indicate prior occurrences of genetic exchange. Altogether, the genome of EA-CB0015 supports its function as a biocontrol agent against phytopathogens and suggest it has adapted to thrive within phyllosphere environments.

2.
Funct Integr Genomics ; 20(4): 575-589, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32198678

ABSTRACT

Bacillus subtilis is a remarkably diverse bacterial species that displays many ecological functions. Given its genomic diversity, the strain Bacillus subtilis EA-CB0575, isolated from the rhizosphere of a banana plant, was sequenced and assembled to determine the genomic potential associated with its plant growth promotion potential. The genome was sequenced by Illumina technology and assembled using Velvet 1.2.10, resulting in a whole genome of 4.09 Mb with 4332 genes. Genes involved in the production of indoles, siderophores, lipopeptides, volatile compounds, phytase, bacilibactin, and nitrogenase were predicted by gene annotation or by metabolic pathway prediction by RAST. These potential traits were determined using in vitro biochemical tests, finding that B. subtilis EA-CB0575 produces two families of lipopeptides (surfactin and fengycin), solubilizes phosphate, fixes nitrogen, and produces indole and siderophores compounds. Finally, strain EA-CB0575 increased 34.60% the total dry weight (TDW) of tomato plants with respect to non-inoculated plants at greenhouse level. These results suggest that the identification of strain-specific genes and predicted metabolic pathways might explain the strain potential to promote plant growth by several mechanisms of action, accelerating the development of plant biostimulants for sustainable agricultural.


Subject(s)
Bacillus subtilis/genetics , Genome, Bacterial , Rhizosphere , 6-Phytase/genetics , 6-Phytase/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crop Production/methods , Indoles/metabolism , Lipopeptides/genetics , Lipopeptides/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Musa/growth & development , Musa/microbiology , Nitrogenase , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Siderophores/genetics , Siderophores/metabolism
3.
Sci Rep ; 10(1): 5563, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221330

ABSTRACT

The world is in the midst of an antimicrobial resistance crisis, driving a need to discover novel antibiotic substances. Using chemical cues as inducers to unveil a microorganism's full metabolic potential is considered a successful strategy. To this end, we investigated an inducible antagonistic behavior in multiple isolates of the order Bacillales, where large inhibition zones were produced against Ralstonia solanacearum only when grown in the presence of the indicator triphenyl tetrazolium chloride (TTC). This bioactivity was produced in a TTC-dose dependent manner. Escherichia coli and Staphylococcus sp. isolates were also inhibited by Bacillus sp. strains in TTC presence, to a lesser extent. Knockout mutants and transcriptomic analysis of B. subtilis NCIB 3610 cells revealed that genes from the L-histidine biosynthetic pathway, the purine, pyrimidine de novo synthesis and salvage and interconversion routes, were significantly upregulated. Chemical space studied through metabolomic analysis, showed increased presence of nitrogenous compounds in extracts from induced bacteria. The metabolites orotic acid and L-phenylalaninamide were tested against R. solanacearum, E. coli, Staphylococcus sp. and B. subtilis, and exhibited activity against pathogens only in the presence of TTC, suggesting a biotransformation of nitrogenous compounds in Bacillus sp. cells as the plausible cause of the inducible antagonistic behavior.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillales/metabolism , Bacteria/drug effects , Tetrazolium Salts/pharmacology , Biosynthetic Pathways/drug effects , Microbial Sensitivity Tests
4.
Microbiol Res ; 217: 69-80, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30384910

ABSTRACT

Bacillus subtilis EA-CB0575 is a plant growth-promoting bacterium (PGPB) associated with banana and tomato crops. Root colonization is an important trait for PGPB microorganisms and potentiates the bacterial effect related to the mechanisms of plant growth promotion. Therefore, detection of bacterial colonization of roots in different culture systems is important in the study of plant-microorganism interactions. In this study, fluorescent in situ hybridization (FISH) and catalyzed reporter deposition-FISH (CARD-FISH) were evaluated to determine the colonization ability of B. subtilis EA-CB0575 on banana and tomato roots planted on solid and liquid Murashige and Skoog medium (MS(S) and MS(L), respectively) and in soil for tomato plants. Results showed B. subtilis colonization 0-30 days post inoculation for banana and tomato plants in different culture systems with differential distribution of bacterial cells along tomato and banana roots. FISH and CARD-FISH methodologies were both successful in detecting B. subtilis colonies, but CARD-FISH proved to be superior due to its enhanced fluorescence signal. The presence of bacteria correlated with the promotion of plant growth in both plant species, providing clues to relate rhizospheric colonization with improvement in plant growth. FISH and CARD-FISH analysis results suggested the presence of native microbiota on the roots of in vitro banana plants, but not on those of tomato plants.


Subject(s)
Agricultural Inoculants , Bacillus subtilis/growth & development , Bacillus subtilis/physiology , Musa/microbiology , Plant Development , Plant Roots/microbiology , Solanum lycopersicum/microbiology , In Situ Hybridization, Fluorescence , Solanum lycopersicum/growth & development , Microbiota , Microscopy, Electron, Scanning , Musa/growth & development , Rhizosphere , Seeds/microbiology , Soil , Soil Microbiology
5.
Colloids Surf B Biointerfaces ; 156: 114-122, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28527355

ABSTRACT

Lipopeptide biosurfactants constitute one of the most promising groups of compounds for the treatment and prevention of fungal diseases in plants. Bacillus subtilis strain EA-CB0015 produces iturin A, fengycin C and surfactin and it has been proven useful for the treatment of black Sigatoka disease in banana plants, an important pathology caused by the fungus Mycosphaerella fijiensis (Morelet). We have found that B. subtilis EA-CB0015 cell free supernatants and purified fractions inhibit M. fijiensis cellular growth. The effect of the purified lipopeptides mentioned above on fungal growth has been also evaluated, observing that iturin A and fengycin C inhibit mycelial growth and ascospore germination, whereas surfactin is not effective. On the hypothesis that the antifungal action of the lipopeptides is associated to their incorporation into biological membranes, ultimately leading to membrane permeabilization, a detailed biophysical study on the interaction of a new isoform of fengycin C with model dipalmitoyphosphatidylcholine (DPPC) membranes has been carried out. Differential scanning calorimetry shows that fengycin C alters the thermotropic phase transitions of DPPC, and is laterally segregated in the fluid bilayer forming domains. Fluorescent probe polarization measurements show that fengycin C does not affect the hydrophobic interior of the membrane. This latter perturbation is concomitant with a strong dehydration of the polar region of DPPC, as shown by FTIR. Fengycin-rich domains, where the surrounding DPPC molecules are highly dehydrated, may well constitute sites of membrane permeabilization leading to a leaky target membrane. These results are a solid support to explain the membrane perturbing action of fengycin, which has been related to its antifungal activity.


Subject(s)
Fungi/drug effects , Lipopeptides/pharmacology , Membranes, Artificial , Phosphatidylcholines/chemistry , Surface-Active Agents/pharmacology , Fungi/growth & development , Lipopeptides/chemistry , Microbial Sensitivity Tests , Surface-Active Agents/chemistry
6.
Bioprocess Biosyst Eng ; 38(10): 1879-88, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26135004

ABSTRACT

Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.


Subject(s)
Bacillus subtilis/physiology , Batch Cell Culture Techniques/methods , Bioreactors/microbiology , Cell Culture Techniques/methods , Culture Media/metabolism , Spores, Bacterial/growth & development , Bacillus subtilis/classification , Bacillus subtilis/cytology , Cell Proliferation/physiology , Species Specificity , Spores, Bacterial/cytology
7.
J Nat Prod ; 76(4): 503-9, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23461648

ABSTRACT

Bacillus subtilis EA-CB0015 was isolated from the phyllosphere of a banana plant and tested for its potential to produce bioactive compounds against Mycosphaerella fijiensis. Using a dual plate culture technique the cell-free supernatant of B. subtilis EA-CB0015 produced inhibition values of 89 ± 1%. The active compounds were purified by solid-phase extraction and HPLC, and their primary structures determined using mass spectrometry and amino acid analysis. A new fengycin isoform, fengycin C, with the amino acid sequence Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Thr-Ile was isolated. The peptidic moiety differs from fengycin B at position 9 and from fengycin A at positions 6 and 9. The ß-hydroxy fatty acyl chain is connected to the N-terminal of the decapeptide and can be saturated or unsaturated, ranging from 14 to 18 carbons. The C-terminal residue of the peptidic moiety is linked to the tyrosine residue at position 3, forming the branching point of the acyl peptide and the eight-membered cyclic lactone.


Subject(s)
Antifungal Agents/isolation & purification , Bacillus subtilis/chemistry , Lipopeptides/isolation & purification , Amino Acid Sequence , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Ascomycota/drug effects , Lipopeptides/chemistry , Microbial Sensitivity Tests , Molecular Structure , Musa/microbiology , Peptides, Cyclic/chemistry , Protein Isoforms , Tyrosine/chemistry , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...