Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 1(1): fcz024, 2019.
Article in English | MEDLINE | ID: mdl-32395715

ABSTRACT

Mutations in presenilin-1 (PSEN1), encoding the catalytic subunit of the amyloid precursor protein-processing enzyme γ-secretase, cause familial Alzheimer's disease. However, the mechanism of disease is yet to be fully understood and it remains contentious whether mutations exert their effects predominantly through gain or loss of function. To address this question, we generated an isogenic allelic series for the PSEN1 mutation intron 4 deletion; represented by control, heterozygous and homozygous mutant induced pluripotent stem cells in addition to a presenilin-1 knockout line. Induced pluripotent stem cell-derived cortical neurons reveal reduced, yet detectable amyloid-beta levels in the presenilin-1 knockout line, and a mutant gene dosage-dependent defect in amyloid precursor protein processing in PSEN1 intron 4 deletion lines, consistent with reduced processivity of γ-secretase. The different effects of presenilin-1 knockout and the PSEN1 intron 4 deletion mutation on amyloid precursor protein-C99 fragment accumulation, nicastrin maturation and amyloid-beta peptide generation support distinct consequences of familial Alzheimer's diseaseassociated mutations and knockout of presenilin-1 on the function of γ-secretase.

2.
Front Cell Neurosci ; 12: 404, 2018.
Article in English | MEDLINE | ID: mdl-30524237

ABSTRACT

Aberrant or chronic microglial activation is strongly implicated in neurodegeneration, where prolonged induction of classical inflammatory pathways may lead to a compromised blood-brain barrier (BBB) or vasculature, features of many neurodegenerative disorders and implicated in the observed cognitive decline. BBB disruption or vascular disease may expose the brain parenchyma to "foreign" plasma proteins which subsequently impact on neuronal network integrity through neurotoxicity, synaptic loss and the potentiation of microglial inflammation. Here we show that the blood coagulation factor fibrinogen (FG), implicated in the pathogenesis of dementias such as Alzheimer's disease (AD), induces an inflammatory microglial phenotype as identified through genetic microarray analysis of a microglial cell line, and proteome cytokine profiling of primary microglia. We also identify a FG-mediated induction of non-cell autonomous ER stress-associated neurotoxicity via a signaling pathway that can be blocked by pharmacological inhibition of microglial TNFα transcription or neuronal caspase-12 activity, supporting a disease relevant role for plasma components in neuronal dysfunction.

3.
Cell Rep ; 24(9): 2300-2311, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157425

ABSTRACT

Dysfunction of microglia, the brain's immune cells, is linked to neurodegeneration. Homozygous missense mutations in TREM2 cause Nasu-Hakola disease (NHD), an early-onset dementia. To study the consequences of these TREM2 variants, we generated induced pluripotent stem cell-derived microglia-like cells (iPSC-MGLCs) from patients with NHD caused by homozygous T66M or W50C missense mutations. iPSC-MGLCs expressed microglial markers and secreted higher levels of TREM2 than primary macrophages. TREM2 expression and secretion were reduced in variant lines. LPS-mediated cytokine secretion was comparable between control and TREM2 variant iPSC-MGLCs, whereas survival was markedly reduced in cells harboring missense mutations when compared with controls. Furthermore, TREM2 missense mutations caused a marked impairment in the phagocytosis of apoptotic bodies, but not in Escherichia coli or zymosan substrates. Coupled with changes in apoptotic cell-induced cytokine release and migration, these data identify specific deficits in the ability of iPSC-MGLCs harboring TREM2 missense mutations to respond to specific pathogenic signals.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Membrane Glycoproteins/genetics , Microglia/metabolism , Mutation, Missense , Receptors, Immunologic/genetics , Humans , Membrane Glycoproteins/metabolism , Phagocytosis , Receptors, Immunologic/metabolism
4.
Curr Opin Neurobiol ; 36: 74-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26517285

ABSTRACT

Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), and microglia, the brain's resident phagocyte, are pivotal for the immune response observed in AD. Microglia act as sentinel and protective cells, but may become inappropriately reactive in AD to drive neuropathology. Recent Genome Wide Association Studies (GWAS) have identified more than 20 gene variants associated with an increased risk of late-onset AD (LOAD), the most prevalent form of AD [1]. The findings strongly implicate genes related to the immune response (CR1, CD33, MS4A, CLU, ABCA7, EPHA1 and HLA-DRB5-HLA-DRB1), endocytosis (BIN1, PICALM, CD2AP, EPHA1 and SORL1) and lipid biology (CLU, ABCA7 and SORL1) [2-8], and many encode proteins which are highly expressed in microglia [1]. Furthermore, recent identification of a low frequency mutation in the gene encoding the triggering receptor expressed in myeloid cells 2 protein (TREM2) confers increased risk of AD in LOAD cohorts with an effect size similar to that for APOE, until recently the only identified genetic risk factor associated with LOAD [9,10(••)] (Figure 1). The present review summarises our current understanding of the probable roles of microglial genes in the regulation of neuroinflammatory processes in AD and their relation to other processes affecting the disease's progression.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Expression Regulation , Inflammation/genetics , Microglia/metabolism , Alzheimer Disease/immunology , Brain/immunology , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammation/immunology , Late Onset Disorders/genetics , Late Onset Disorders/immunology , Microglia/immunology , Mutation , Signal Transduction
5.
Biomaterials ; 33(29): 7241-50, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22809644

ABSTRACT

The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. We aim to develop nanocomplex formulations that achieve targeted transfection of neuroblastoma tumours that can be monitored simultaneously by MRI. Here, we have compared nanocomplexes comprising self-assembling mixtures of liposomes, plasmid DNA and one of three different peptide ligands derived from ApoE, neurotensin and tetanus toxin for targeted transfection in vitro and in vivo. Neurotensin-targeted nanocomplexes produced the highest levels of transfection and showed a 4.7-fold increase in transfected luciferase expression over non-targeted nanocomplexes in Neuro-2A cells. Transfection of subcutaneous Neuro-2A tumours in vivo with neurotensin-targeted nanocomplexes produced a 9.3-fold increase in gene expression over non-targeted controls. Confocal microscopy analysis elucidated the time course of DNA delivery with fluorescently labelled nanocomplex formulations in cells. It was confirmed that addition of a gadolinium lipid conjugate contrast agent allowed real time in vivo monitoring of nanocomplex localisation in tumours by MRI, which was maintained for at least 24 h. The peptide-targeted nanocomplexes developed here allow for the specific enhancement of targeted gene therapy both in vitro and in vivo, whilst allowing real time monitoring of delivery with MRI.


Subject(s)
Gene Transfer Techniques , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Neoplasms/therapy , Animals , Cell Line, Tumor , Contrast Media/pharmacology , Female , Gadolinium/chemistry , Genetic Therapy/methods , Kinetics , Ligands , Liposomes/chemistry , Luciferases/metabolism , Mice , Models, Chemical , Nanotechnology/methods , Neoplasm Transplantation , Neoplasms/pathology , Neurotensin/chemistry , Peptides/chemistry , Tetanus Toxin/chemistry , Transfection
6.
J Control Release ; 162(2): 340-8, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22800579

ABSTRACT

Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency. MRI conspicuity peaked at 4h after incubation of the nanocomplexes with cells, suggesting enhancement by cellular uptake and trafficking. This was supported by time course confocal microscopy analysis of transfections with fluorescently-labelled LPD nanocomplexes. Gd-LPD nanocomplexes delivered to rat brains by convection-enhanced delivery were visible by MRI at 6 h, 24 h and 48 h after administration. Histological brain sections analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) confirmed that the MRI signal was associated with the distribution of Gd(3+) moieties and differentiated MRI signals due to haemorrhage. The transfected brain cells near the injection site appeared to be mostly microglial. This study shows the potential of Gd-LPD nanocomplexes for simultaneous delivery of contrast agents and genes for real-time monitoring of gene therapy in the brain.


Subject(s)
Contrast Media/administration & dosage , DNA/administration & dosage , Gadolinium/administration & dosage , Glycosyltransferases/administration & dosage , Nanoparticles/administration & dosage , Animals , Brain/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/pharmacokinetics , DNA/chemistry , Fatty Acids, Monounsaturated/chemistry , Gadolinium/chemistry , Gadolinium/pharmacokinetics , Glycosyltransferases/chemistry , Humans , Magnetic Resonance Imaging/methods , Male , Nanoparticles/chemistry , Peptides , Phosphatidylethanolamines/chemistry , Quaternary Ammonium Compounds/chemistry , Rats , Rats, Wistar , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...