Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Membranes (Basel) ; 12(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36135870

ABSTRACT

Reverse osmosis (RO) desalination is a technology that is commonly used to mitigate water scarcity problems; one of its disadvantages is the bio-fouling of the membranes used, which reduces its performance. In order to minimize this problem, this study prepared modified thin film composite (TFC) membranes by the incorporation of chitosan-silver particles (CS-Ag) of different molecular weights, and evaluated them in terms of their anti-biofouling and desalination performances. The CS-Ag were obtained using ionotropic gelation, and were characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The modified membranes were synthetized by the incorporation of the CS-Ag using the interfacial polymerization method. The membranes (MCS-Ag) were characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and contact angle. Bactericidal tests by total cell count were performed using Bacillus halotolerans MCC1, and anti-adhesion properties were confirmed through biofilm cake layer thickness and total organic carbon (%). The desalination performance was defined by permeate flux, hydraulic resistance, salt rejection and salt permeance by using 2000 and 5000 mg L-1 of NaCl. The MCS-Ag-L presented superior permeate flux and salt rejection (63.3% and 1% higher, respectively), as well as higher bactericidal properties (76% less in total cell count) and anti-adhesion capacity (biofilm thickness layer 60% and total organic carbon 75% less, compared with the unmodified membrane). The highest hydraulic resistance value was for MCS-Ag-M. In conclusion, the molecular weight of CS-Ag significantly influences the desalination and the antimicrobial performances of the membranes; as the molecular weight decreases, the membranes' performances increase. This study shows a possible alternative for increasing membrane useful life in the desalination process.

2.
Environ Sci Pollut Res Int ; 26(7): 6311-6318, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30617876

ABSTRACT

The removal of heavy metals from acid mine drainage is a key factor for avoiding damage to the environment. The microalga Nannochloropsis oculata was cultured in an algal medium with 0.05, 0.1, 0.15, 0.2, and 0.25 mM copper under completely defined conditions to assess its removal capacity; the effects of copper on the cell density and lipid productivity of N. oculata were also evaluated. The results showed that N. oculata was able to remove up to 99.92 ± 0.04% of the copper content in the culture medium. A total of 89.29 ± 1.92% was eliminated through metabolism, and 10.70 ± 1.92% was removed by adsorption. These findings are favorable because they indicate that a large amount of copper was extracted due to the ability of the microalga to metabolize copper ions. The cell density, growth rate, and lipid content decreased with increased concentrations of copper in the culture medium. A positive effect on the fatty acid profile was found, as the saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) content improved when the copper concentration was higher than 0.1 mmol L-1, which can potentiate the production of high-quality biodiesel. N. oculata is a good option for the treatment of acid mine drainage due to its ability to eliminate a substantial percentage of the copper present. Moreover, combining different culture systems such that heavy metals are removed to non-toxic levels in the first stage and high cell densities, which promote lipid production, is obtained in the second stage would be an advantageous strategy.


Subject(s)
Copper/metabolism , Microalgae/metabolism , Mining , Stramenopiles/metabolism , Water Pollutants, Chemical/metabolism , Biofuels , Environmental Restoration and Remediation , Fatty Acids/metabolism , Industrial Waste , Lipid Metabolism , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL