Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 5(3)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311197

ABSTRACT

Scedosporium/Lomentospora complex is composed of filamentous fungi, including some clinically relevant species, such as Pseudallescheria boydii, Scedosporium aurantiacum, and Scedosporium apiospermum. Glucosylceramide (GlcCer), a conserved neutral glycosphingolipid, has been described as an important cell surface molecule playing a role in fungal morphological transition and pathogenesis. The present work aimed at the evaluation of GlcCer structures in S. aurantiacum and Pseudallescheria minutispora, a clinical and an environmental isolate, respectively, in order to determine their participation in fungal growth and host-pathogen interactions. Structural analysis by positive ion-mode ESI-MS (electrospray ionization mass spectrometer) revealed the presence of different ceramide moieties in GlcCer in these species. Monoclonal antibodies against Aspergillus fumigatus GlcCer could recognize S. aurantiacum and P. minutispora conidia, suggesting a conserved epitope in fungal GlcCer. In addition, these antibodies reduced fungal viability, enhanced conidia phagocytosis by macrophages, and decreased fungal survival inside phagocytic cells. Purified GlcCer from both species led to macrophage activation, increasing cell viability as well as nitric oxide and superoxide production in different proportions between the two species. These results evidenced some important properties of GlcCer from species of the Scedosporium/Lomentospora complex, as well as the effects of monoclonal anti-GlcCer antibodies on fungal cells and host-pathogen interaction. The differences between the two species regarding the observed biological properties suggest that variation in GlcCer structures and strain origin could interfere in the role of GlcCer in host-pathogen interaction.

2.
Int J Food Microbiol ; 237: 39-46, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27543814

ABSTRACT

Aureocin A70 is the only four-component bacteriocin described to date. As it inhibits the growth of a wide range of Gram-positive bacteria, including Listeria monocytogenes strains isolated from food, its potential for improving food safety was investigated in this study. Aureocin A70 (10,240AU/mL) proved to be bactericidal, but not extensively lytic, against listerial strains. The antibacterial activity of aureocin A70 (16AU/mL) was then tested in UHT-treated skimmed milk inoculated with the food-associated L. monocytogenes L12 strain (4-log CFU/mL) during storage at 4°C for one week. Aureocin A70 caused a time-dependent reduction in the listerial viable cell counts (5.51-log units) up to 7days of incubation. Aureocin A70 was neither toxic to the Vero and the L-929 cell lines nor exhibited a hemolytic activity against sheep red blood cells. Aureocin A70 proved to be completely stable for one month at 25°C, 16weeks at 4°C and 20weeks at -20°C. Aureocin A70 exhibited a time-dependent susceptibility to simulated gastric juice and bile salts mimicking gastrointestinal conditions. The entrapment of aureocin A70 in an alginate/gelatin matrix revealed that this bacteriocin can be released from this matrix. Moreover, it remained adsorbed to and active on a low-density polyethylene plastic surface suggesting that aureocin A70 may be employed in bioactive packaging to control the growth of undesirable bacteria. Taken together these results suggest that aureocin A70 is a promising alternative to be used in food applications.


Subject(s)
Bacteriocins/pharmacology , Food Preservatives/pharmacology , Animals , Food Microbiology , Food Preservation/instrumentation , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Milk/microbiology , Sheep , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
3.
Mar Drugs ; 11(11): 4628-40, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24284427

ABSTRACT

Total lipids from the Brazilian brown seaweed Sargassum vulgare were extracted with chloroform/methanol 2:1 and 1:2 (v/v) at room temperature. After performing Folch partition of the crude lipid extract, the lipids recovered from the Folch lower layer were fractionated on a silica gel column eluted with chloroform, acetone and methanol. The fraction eluted with methanol, presented a strong orcinol-positive band characteristic of the presence of sulfatides when examined by TLC. This fraction was then purified by two successive silica gel column chromatography giving rise to fractions F4I86 and F4II90 that exhibited strong activity against herpes simplex virus type 1 and 2. The chemical structures present in both fractions were elucidated by ESI-MS and ¹H/¹³C NMR analysis HSQC fingerprints based on their tandem-MS behavior as Sulfoquinovosyldiacylglycerols (SQDGs). The main SQDG present in both fractions and responsible for the anti-herpes activity observed was identified as 1,2-di-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol.


Subject(s)
Antiviral Agents/chemistry , Glycolipids/chemistry , Glycolipids/pharmacology , Sargassum/chemistry , Seaweed/chemistry , Animals , Antiviral Agents/pharmacology , Brazil , Cell Line , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Lipids/chemistry , Lipids/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...