Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(13): 3267-3275, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32163065

ABSTRACT

The performances of Pressure Sensitive Adhesives (PSA) are generally evaluated using different loading geometries such as tack, peel and shear tests. It is difficult to link the behaviors of PSAs in these different geometries, and to predict the result of one test from another, because the confinement of a soft and dissipative material prevents the use of standard fracture mechanics, which separates the interface debonding behavior from the dissipation associated with the bulk deformation. We present here an original experimental investigation based on the modeling strategy proposed by Creton and Ciccotti[1]. Using instrumented versions of both peel and tack measurements, we compared the adherence performances of a series of model PSAs based on styrene-isoprene block copolymers, while identifying the mesoscale mechanisms at play during debonding. This analysis method allows us to model the contribution of the large strain rheology of the PSAs in the total work of debonding. We clearly show that both the adherence performances and local mechanisms can be closely related between peel and tack when considering both similar confinement and a similar strain rate of the fibrils that are spontaneously formed during debonding. While the overall adherence properties change by a factor of 3 between the different samples, the peel tests only present a minor +20% bias in adherence, which can be attributed to the combination of a 10% increase in the average stress and a 10% increase in the maximum strain of the fibrils. This improvement in the understanding of the PSA performances opens the way to a more sound mechanical design of PSA based joints.

2.
Soft Matter ; 12(20): 4537-48, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27050487

ABSTRACT

We present an experimental characterization of the detachment front unstable dynamics observed during the peeling of pressure sensitive adhesives. We use an experimental set-up specifically designed to control the peeling angle θ and the peeled tape length L, while peeling an adhesive tape from a flat substrate at a constant driving velocity V. High-speed imaging allows us to report the evolution of the period and amplitude of the front oscillations, as well as the relative durations of their fast and slow phases, as a function of the control parameters V, L and θ. Our study shows that, as the driving velocity or the peeling angle increases, the oscillations of the peeling front progressively evolve from genuine "stick-slip" oscillations, made of alternating long stick phases and very brief slip phases, to sinusoidal oscillations of amplitude twice the peeling velocity. We propose a model which, taking into account the peeling angle-dependent kinetic energy cost to accelerate and decelerate the peeled tape, explains the transition from the "stick-slip" to the "inertial" regime of the dynamical instability. Using independent direct measurements of the effective fracture energy of the adhesive-substrate joint, we show that our model quantitatively accounts for the two regimes of the unstable dynamics.

3.
Soft Matter ; 11(17): 3480-91, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25791135

ABSTRACT

The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950's, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.

4.
Phys Rev Lett ; 111(21): 215701, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313505

ABSTRACT

The rheological properties of liquids confined to nanometer scales are important in many physical situations. In this Letter, we demonstrate that the long-range elastic deformation of the confining surfaces must be taken into account when considering the rheology of nanometric liquids. In the case of a squeeze-flow geometry, we show that below a critical distance D(c), the liquid is clamped by its viscosity and its intrinsic properties cannot be disentangled from the global system response. Using nanorheology experiments, we demonstrate that picometer elastic deflections of the rigid confining surfaces dominate the overall mechanical response of nanometric liquids confined between solid walls.

5.
Rev Sci Instrum ; 84(8): 085113, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24007113

ABSTRACT

We present here a new type of distance sensor mounted on a Surface Force Apparatus (SFA), able to detect the position of a buried interface and therefore the thickness of a thin solid or soft matter film coating the SFA surface(s). This sensor relies on the capacitance created by the two metallized surfaces of the SFA. An harmonic oscillation of these polarized surfaces creates a pico- to femto-amps current indicating their relative position. One of the specificities of this sensor is the relatively weak polarization used for the measurements, minimizing the electrical forces and their impact on other interactions, hydrodynamical and mechanical forces measured by the SFA. This original and simple design is of high interest for studying the viscoelastic properties of thin films, to detect adsorbed liquid layers or slippage at liquid-solid interfaces, or even to study complex fluids such as ionic liquids under polarization. We demonstrate the use of this sensor to study the flow boundary condition of silicon oil on a metal surface, and the elastic modulus of a thin elastomer layer.

6.
Appl Opt ; 49(16): 3140-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20517385

ABSTRACT

We present a real-time time-domain Doppler optical coherence tomography (OCT) system based on the zero-crossing method for velocity measurements of fluid flows with attainable velocities up to 10 m/s. In the current implementation, one-dimensional and two-dimensional velocity profiles of fluid flows ranging from 1 cm/s to more than 3 m/s were obtained for both laminar and turbulent flows. The line rate was approximately 500 Hz, and the images were treated in real time. This approach has the advantage of providing reliable velocity maps free from phase aliasing or other artifacts common to several OCT systems. The system is particularly well suited for investigating complex velocity profiles, especially in the presence of steep velocity gradients.


Subject(s)
Laser-Doppler Flowmetry/instrumentation , Tomography, Optical Coherence/instrumentation , Computer Systems , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...