Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 887: 163936, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37149179

ABSTRACT

An 'oasis' signifies a refugium of safety, recovery, relaxation, fertility, and productivity in an inhospitable desert, a sweet spot in a barren landscape where life-giving water spills forth from the Earth. Remarkable mythological congruencies exist across dryland cultures worldwide where oases or 'arid-land springs' occur. In many places they also provide specialised habitats for an extraordinary array of endemic organisms. To inform their management, and maintain their integrity, it is essential to understand the hydrogeology of aquifers and springs. Gravity-fed vs artesian aquifers; actively recharged vs fossil aquifers, and sources of geothermal activity are important concepts presented here. There consequences for oases of sustainable and unsustainable groundwater extraction, and other examples of effective conservation management. Oases are archetypes for human consciousness, habitats that deserve protection and conservation, and a lingua franca for multicultural values and scientific exchange. We represent an international Fellowship of the Spring seeking to encompass and facilitate the stewardship of oases and aquifers through improved knowledge, outreach, and governance.


Subject(s)
Groundwater , Natural Springs , Humans , Fellowships and Scholarships , Ecosystem , Fresh Water
3.
Nature ; 576(7786): 213, 2019 12.
Article in English | MEDLINE | ID: mdl-31822829
4.
Nature ; 572(7768): 230-234, 2019 08.
Article in English | MEDLINE | ID: mdl-31391559

ABSTRACT

Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets3. Yet the hydrological processes that govern groundwater recharge and sustainability-and their sensitivity to climatic variability-are poorly constrained4,5. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation-recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation-recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the 'high certainty' consensus regarding decreasing water resources4 in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation-recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies.


Subject(s)
Groundwater/analysis , Rain , Africa South of the Sahara , Desert Climate , Droughts/statistics & numerical data
5.
Ground Water ; 50(5): 704-14, 2012.
Article in English | MEDLINE | ID: mdl-22171954

ABSTRACT

On December 26, 2004, the earthquake off the southern coast of Sumatra in the Indian Ocean generated far-reaching tsunami waves, resulting in severe disruption of the coastal aquifers in many countries of the region. The objective of this study was to examine the impact of the tsunami on groundwater in coastal areas. Field investigations on the east coast of Sri Lanka were carried out along a transect located perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon. Measurements of groundwater table elevation and electrical conductivity (EC) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC < 1000 µS/cm) 1 to 1.5 years after the tsunami, according to field observations. On the basis of model simulations, it may take more than 15 years for the entire aquifer (down to 28 m) to recover completely, although the top 6 m of the aquifer may become fresh in about 5 years.


Subject(s)
Groundwater , Environmental Monitoring , Models, Theoretical , Sri Lanka , Tsunamis
6.
Environ Monit Assess ; 176(1-4): 13-30, 2011 May.
Article in English | MEDLINE | ID: mdl-20559710

ABSTRACT

Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO(3)-N), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km(2) per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Supply/analysis , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL
...