Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956728

ABSTRACT

We report the design, production, and characterization of microfoamed strands by means of a green and sustainable technology that makes use of CO2 to create ad-hoc innovative bubble morphologies. 3D foam-printing technology has been recently developed; thus, the foaming mechanism in the printer nozzle is not yet fully understood and controlled. We study the effects of the operating parameters of the 3D foam-printing process to control and optimize CO2 utilization through a maximization of the foaming efficiency. The strands' mechanical properties were measured as a function of the foam density and explained by means of an innovative model that takes into consideration the polymer's crystallinity content. The innovative microfoamed morphologies were produced using a bio-based and compostable polymer as well as polylactic acid and were then blown with CO2. The results of the extensive experimental campaigns show insightful maps of the bubble size, density, and crystallinity as a function of the process parameters, i.e., the CO2 concentration and temperature. A CO2 content of 15 wt% enables the acquirement of an incredibly low foam density of 40 kg/m3 and porosities from the macro-scale (100-900 µm) to the micro-scale (1-10 µm), depending on the temperature. The foam crystallinity content varied from 5% (using a low concentration of CO2) to 45% (using a high concentration of CO2). Indeed, we determined that the crystallinity content changes linearly with the CO2 concentration. In turn, the foamed strand's elastic modulus is strongly affected by the crystallinity content. Hence, a corrected Egli's equation was proposed to fit the strand mechanical properties as a function of foam density.

2.
Light Sci Appl ; 10(1): 187, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526484

ABSTRACT

Single-cell phase-contrast tomography promises to become decisive for studying 3D intracellular structures in biology. It involves probing cells with light at wide angles, which unfortunately requires complex systems. Here we show an intriguing concept based on an inherent natural process for plants biology, i.e., dehydration, allowing us to easily obtain 3D-tomography of onion-epidermal cells' nuclei. In fact, the loss of water reduces the turgor pressure and we recognize it induces significant rotation of cells' nuclei. Thanks to the holographic focusing flexibility and an ad-hoc angles' tracking algorithm, we combine different phase-contrast views of the nuclei to retrieve their 3D refractive index distribution. Nucleolus identification capability and a strategy for measuring morphology, dry mass, biovolume, and refractive index statistics are reported and discussed. This new concept could revolutionize the investigation in plant biology by enabling dynamic 3D quantitative and label-free analysis at sub-nuclear level using a conventional holographic setup.

3.
Light Sci Appl ; 8: 20, 2019.
Article in English | MEDLINE | ID: mdl-30701075

ABSTRACT

The dynamics and stability of thin liquid films have fascinated scientists over many decades. Thin film flows are central to numerous areas of engineering, geophysics, and biophysics and occur over a wide range of lengths, velocities, and liquid property scales. In spite of many significant developments in this area, we still lack appropriate quantitative experimental tools with the spatial and temporal resolution necessary for a comprehensive study of film evolution. We propose tackling this problem with a holographic technique that combines quantitative phase imaging with a custom setup designed to form and manipulate bubbles. The results, gathered on a model aqueous polymeric solution, provide unparalleled insight into bubble dynamics through the combination of a full-field thickness estimation, three-dimensional imaging, and a fast acquisition time. The unprecedented level of detail offered by the proposed methodology will promote a deeper understanding of the underlying physics of thin film dynamics.

4.
Langmuir ; 34(19): 5646-5654, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29664652

ABSTRACT

When a Newtonian bubble ruptures, the film retraction dynamics is controlled by the interplay of surface, inertial, and viscous forces. In case a viscoelastic liquid is considered, the scenario is enriched by the appearance of a new significant contribution, namely, the elastic force. In this paper, we investigate experimentally the retraction of viscoelastic bubbles inflated at different blowing rates, showing that the amount of elastic energy stored by the liquid film enclosing the bubble depends on the inflation history and in turn affects the velocity of film retraction when the bubble is punctured. Several viscoelastic liquids are considered. We also perform direct numerical simulations to support the experimental findings. Finally, we develop a simple heuristic model able to interpret the physical mechanism underlying the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...