Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(14): e202200783, 2023 07 17.
Article in English | MEDLINE | ID: mdl-36892311

ABSTRACT

The multifunctionality of galectins helps regulate a broad range of fundamental cellular processes via cis-binding and trans-bridging activities and has gained widespread attention with respect to the importance of the natural specificity/selectivity of this lectin family to its glycoconjugate receptors. Combining galectin (Gal)-1, -3, -4, and -9 variant test panels, achieved via rational protein engineering, and a synthetic α-dystroglycan (DG) O-Mannosylated core M1 glycopeptide library, a detailed comparative analysis was performed, utilizing microarray experiments to delineate the design-functionality relationships within this lectin family. Enhancement of prototype Gal-1 and chimera-type Gal-3 cis-binding toward the prepared ligands is possible by transforming these lectins into tandem-repeat type and prototypes, respectively. Furthermore, Gal-1 variants demonstrated improved trans-bridging capabilities between core M1 α-DG glycopeptides and laminins in microarray, suggesting the possible translational applications of these galectin variants in the treatment of some forms of α-dystroglycanopathy.


Subject(s)
Dystroglycans , Galectins , Galectins/metabolism , Glycoconjugates/metabolism , Glycopeptides
2.
Sci Rep ; 12(1): 17800, 2022 10 23.
Article in English | MEDLINE | ID: mdl-36274065

ABSTRACT

Dystroglycan (DG), which constitutes a part of the dystrophin-glycoprotein complex, connects the extracellular matrix to the cytoskeleton. The matriglycans presented by the extracellular α-DG serve as a contact point with extracellular matrix proteins (ECM) containing laminin G-like domains, providing cellular stability. However, it remains unknown whether core M1 (GlcNAcß1-2Man) structures can serve as ligands among the various O-Mannosylated glycans. Therefore, based on the presence of N-acetylLactosamine (LacNAc) in this glycan following the core extension, the binding interactions with adhesion/growth-regulatory galectins were explored. To elucidate this process, the interaction between galectin (Gal)-1, -3, -4 and -9 with α-DG fragment 372TRGAIIQTPTLGPIQPTRV390 core M1-based glycopeptide library were profiled, using glycan microarray and nuclear magnetic resonance studies. The binding of galectins was revealed irrespective of its modular architecture, adding galectins to the list of possible binding partners of α-DG core M1 glycoconjugates by cis-binding (via peptide- and carbohydrate-protein interactions), which can be abrogated by α2,3-sialylation of the LacNAc units. The LacNAc-terminated α-DG glycopeptide interact simultaneously with both the S- and F-faces of Gal-1, thereby inducing oligomerization. Furthermore, Gal-1 can trans-bridge α-DG core M1 structures and laminins, which proposed a possible mechanism by which Gal-1 ameliorates muscular dystrophies; however, this proposal warrants further investigation.


Subject(s)
Dystroglycans , Glycopeptides , Humans , Dystroglycans/metabolism , Glycopeptides/chemistry , Galectins/metabolism , Laminin/metabolism , Ligands , Dystrophin , Polysaccharides/metabolism , Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL
...