Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38979172

ABSTRACT

Adult stem cells play a crucial role in tissue homeostasis and repair through multiple mechanisms. In addition to being able to replace aged or damaged cells, stem cells provide signals that contribute to the maintenance and function of neighboring cells. In the lung, airway basal stem cells also produce cytokines and chemokines in response to inhaled irritants, allergens, and pathogens, which affect specific immune cell populations and shape the nature of the immune response. However, direct cell-to-cell signaling through contact between airway basal stem cells and immune cells has not been demonstrated. Recently, a unique population of intraepithelial airway macrophages (IAMs) has been identified in the murine trachea. Here, we demonstrate that IAMs require Notch signaling from airway basal stem cells for maintenance of their differentiated state and function. Furthermore, we demonstrate that Notch signaling between airway basal stem cells and IAMs is required for antigen-induced allergic inflammation only in the trachea where the basal stem cells are located whereas allergic responses in distal lung tissues are preserved consistent with a local circuit linking stem cells to proximate immune cells. Finally, we demonstrate that IAM-like cells are present in human conducting airways and that these cells display Notch activation, mirroring their murine counterparts. Since diverse lung stem cells have recently been identified and localized to specific anatomic niches along the proximodistal axis of the respiratory tree, we hypothesize that the direct functional coupling of local stem cell-mediated regeneration and immune responses permits a compartmentalized inflammatory response.

2.
Nature ; 629(8013): 869-877, 2024 May.
Article in English | MEDLINE | ID: mdl-38693267

ABSTRACT

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Subject(s)
Cell Plasticity , Epithelial Cells , Regeneration , Respiratory Mucosa , Stem Cells , Animals , Female , Humans , Male , Mice , Epithelial Cells/cytology , Epithelial Cells/pathology , Metaplasia/etiology , Metaplasia/pathology , Respiratory Mucosa/cytology , Respiratory Mucosa/injuries , Respiratory Mucosa/pathology , Stem Cells/cytology , Tretinoin/metabolism , Tretinoin/pharmacology , Vitamin A/metabolism , Vitamin A/pharmacology , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Mice, Inbred C57BL
3.
Nature ; 560(7718): 319-324, 2018 08.
Article in English | MEDLINE | ID: mdl-30069044

ABSTRACT

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Epithelial Cells/metabolism , Animals , Asthma/genetics , Epithelial Cells/cytology , Female , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation , Goblet Cells/cytology , Goblet Cells/metabolism , Humans , Lung/cytology , Male , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Trachea/cytology
4.
Cell Stem Cell ; 16(2): 184-97, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25658372

ABSTRACT

Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63(+) basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63(+) airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell-autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity.


Subject(s)
Cell Lineage , Respiratory Mucosa/cytology , Stem Cells/cytology , Wounds and Injuries/therapy , Animals , Cell Differentiation , Cells, Cultured , Chlorine , Doxycycline , Mice , Respiratory Mucosa/metabolism , Sulfur Dioxide , Wounds and Injuries/chemically induced
5.
Dev Cell ; 30(2): 151-65, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25043474

ABSTRACT

Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap (Yes-associated protein 1) is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and determines epithelial architecture.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adult Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Epithelial Cells/cytology , Phosphoproteins/metabolism , Trachea/cytology , Adaptor Proteins, Signal Transducing/genetics , Adult Stem Cells/metabolism , Animals , Cell Cycle Proteins , Epithelial Cells/metabolism , Mice , Phosphoproteins/genetics , Trachea/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins
6.
Nature ; 484(7394): 333-8, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22466288

ABSTRACT

The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-ß) that is transcribed from an alternative promoter. ChREBP-ß expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.


Subject(s)
Adipose Tissue/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Glucose/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/pathology , Adiposity , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blood Glucose/metabolism , Body Mass Index , Body Weight , Cells, Cultured , Cohort Studies , Cross-Sectional Studies , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Female , Gene Expression Regulation/genetics , Genotype , Glucose/pharmacology , Glucose Intolerance/genetics , Glucose Transporter Type 4/biosynthesis , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Homeostasis/genetics , Humans , Insulin/metabolism , Insulin/pharmacology , Insulin Resistance/genetics , Lipogenesis , Male , Mice , Mice, Knockout , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Obesity/genetics , Obesity/metabolism , Promoter Regions, Genetic/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/chemistry , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...