Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(3): 038201, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763385

ABSTRACT

The dispersive spreading of microscopic particles in shear flows is influenced both by advection and thermal motion. At the nanoscale, interactions between such particles and their confining boundaries become unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial distribution and dispersion of charged nanoparticles in near-surface shear flows, observed under evanescent illumination. The electrostatic repulsion between particles and the lower charged surface is tuned by varying electrolyte concentrations. Particles leaving the field of vision can be neglected from further analysis, such that the experimental ensemble is equivalent to that of Taylor dispersion with absorption. These two ingredients modify the particle distribution, deviating strongly from the Gibbs-Boltzmann form at the nanoscale studied here. The overall effect is to restrain the accessible space available to particles, which leads to a striking, tenfold reduction in the spreading dynamics as compared to the noninteracting case.

2.
Soft Matter ; 17(14): 3765-3774, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33688903

ABSTRACT

Understanding confined flows of complex fluids requires simultaneous access to the mechanical behaviour of the liquid and the boundary condition at the interfaces. Here, we use evanescent wave microscopy to investigate near-surface flows of semi-dilute, unentangled polyacrylamide solutions. By using both neutral and anionic polymers, we show that monomer charge plays a key role in confined polymer dynamics. For solutions in contact with glass, the neutral polymers display chain-sized adsorbed layers, while a shear-rate-dependent apparent slip length is observed for anionic polymer solutions. The slip lengths measured at all concentrations collapse onto a master curve when scaled using a simple two-layer depletion model with non-Newtonian viscosity. A transition from an apparent slip boundary condition to a chain-sized adsorption layer is moreover highlighted by screening the charge with additional salt in the anionic polymer solutions. We anticipate that our study will be a starting point for more complex studies relating the polymer dynamics at interfaces to their chemical and physical composition.

3.
Sci Adv ; 7(5)2021 Jan.
Article in English | MEDLINE | ID: mdl-33514543

ABSTRACT

The friction f is the property of wall-bounded flows that sets the pumping cost of a pipeline, the draining capacity of a river, and other variables of practical relevance. For highly turbulent rough-walled pipe flows, f depends solely on the roughness length scale r, and the f - r relation may be expressed by the Strickler empirical scaling f ∝ r 1/3 Here, we show experimentally that for soap film flows that are the two-dimensional (2D) equivalent of highly turbulent rough-walled pipe flows, f ∝ r and the f - r relation is not the same in 2D as in 3D. Our findings are beyond the purview of the standard theory of friction but consistent with a competing theory in which f is linked to the turbulent spectrum via the spectral exponent α: In 3D, α = 5/3 and the theory yields f ∝ r 1/3; in 2D, α = 3 and the theory yields f ∝ r.

4.
J Colloid Interface Sci ; 529: 53-64, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29883930

ABSTRACT

Despite great innovative and technological promises, nanoparticles (NPs) can ultimately exert an antibacterial activity by affecting the cell envelope integrity. This envelope, by conferring the cell its rigidity and protection, is intimately related to the mechanical behavior of the bacterial surface. Depending on their size, surface chemistry, shape, NPs can induce damages to the cell morphology and structure among others, and are therefore expected to alter the overall mechanical properties of bacteria. Although Atomic Force Microscopy (AFM) stands as a powerful tool to study biological systems, with high resolution and in near physiological environment, it has rarely been applied to investigate at the same time both morphological and mechanical degradations of bacteria upon NPs treatment. Consequently, this study aims at quantifying the impact of the silica NPs (SiO2-NPs) on the mechanical properties of E. coli cells after their exposure, and relating it to their toxic activity under a critical diameter. Cell elasticity was calculated by fitting the force curves with the Hertz model, and was correlated with the morphological study. SiO2-NPs of 100 nm diameter did not trigger any significant change in the Young modulus of E. coli, in agreement with the bacterial intact morphology and membrane structure. On the opposite, the 4 nm diameter SiO2-NPs did induce a significant decrease in E. coli Young modulus, mainly associated with the disorganization of lipopolysaccharides in the outer membrane and the permeation of the underlying peptidoglycan layer. The subsequent toxic behavior of these NPs is finally confirmed by the presence of membrane residues, due to cell lysis, exhibiting typical adhesion features.


Subject(s)
Anti-Bacterial Agents/pharmacology , Elasticity/drug effects , Escherichia coli/cytology , Escherichia coli/drug effects , Nanoparticles , Silicon Dioxide/pharmacology , Biomechanical Phenomena/drug effects , Escherichia coli/ultrastructure , Escherichia coli Infections/microbiology , Humans , Microscopy, Atomic Force , Nanoparticles/chemistry , Silicon Dioxide/chemistry
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 010401, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23005356

ABSTRACT

We report the experimental observation of anisotropic diffusion of polystyrene particles immersed in a lyotropic liquid crystal with two different anchoring conditions. Diffusion is shown to obey the Stokes-Einstein law for particle diameters ranging from 190 nm up to 2 µm. In the case of prolate micelles, the beads diffuse four times faster along the director than in perpendicular directions, D||/D[Symbol: see text] ≈ 4. In the theory part we present a perturbative approach to the Leslie-Ericksen equations and relate the diffusion coefficients to the Miesovicz viscosity parameters η(i). We provide explicit formulas for the cases of uniform director field and planar anchoring conditions which are then discussed in view of the data. As a general rule, we find that the inequalities η(b) <η(a) <η(c), satisfied by various liquid crystals of rodlike molecules, imply D||>D[Symbol: see text].


Subject(s)
Colloids/chemistry , Liquid Crystals/chemistry , Models, Chemical , Computer Simulation , Diffusion , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...