Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 15(24): 2239-2255, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014535

ABSTRACT

Background: Paracoccidioidomycosis (PCM) is a systemic infection caused by Paracoccidioides spp. (Pb). PCM can be associated or clinically confused with tuberculosis (TB), another pulmonary infection, caused by Mycobacterium tuberculosis (Mtb). Futhermore, the long treatment time of TB and PCM and the cases of TB drug resistance impose difficulties for the cure of these diseases. Results: New 1,3,4-oxadiazoles containing the 4-methoxynaphthalene ring were synthesized and their antimicrobial activity was evaluated against Pb and Mtb. The derivative 6n (with 2-hydroxy-5-nitrophenyl subunit) is the most promising of the series. Conclusion: The 1,3,4-oxadiazole 6n can be used as a prototype drug candidate, with anti-Pb and anti-MTb activities, showing a broad-spectrum profile for the treatment of both pulmonary infections.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Paracoccidioidomycosis , Tuberculosis , Humans , Oxadiazoles/pharmacology , Lead/therapeutic use , Tuberculosis/drug therapy , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/microbiology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
2.
Microb Pathog ; 164: 105413, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35066070

ABSTRACT

Candida albicans is one of the major pathogens found in superficial and invasive infections. This fungus expresses several virulence factors and fitness attributes that are essential to the pathogenesis. In our previous study using a murine model of serial systemic candidiasis, virulence of the recovered C. albicans was enhanced and several virulence factors were also modified after five successive passages through mice (P1-P5). In this study, we aimed to correlate the different fungal morphologies, as well as the filamentation, invasion, and stress resistance abilities, of the cells recovered after passing through this model of infection with our previous findings regarding virulence. We obtained two colony morphology types from the recovered cells, differing in their peripheral filamentation. The morphotype 1, which presented zero to five filaments in the colony edge, was higher in P2, while morphotype 2, which presented more than five filaments in the colony edge, was predominant from P3 to P5. In general, morphotype 1 showed similar levels regarding filamentation in serum, invasion of agar and cells, and resistance to osmotic, oxidative, and thermal stress in all passages analyzed. The morphotype 2, however, exhibited an enhancement in these abilities over the passages. We observed an accordance with the increased virulence over the passages obtained in our previous study and the increased adaptability profile of morphotype 2. Therefore, we suggest that the behavior observed previously in the pathogenesis and virulence could be attributed, at least in part, to the greater presence and ability of morphotype 2.


Subject(s)
Candida albicans , Candidiasis , Animals , Candidiasis/microbiology , Fungal Proteins , Mice , Virulence , Virulence Factors
3.
J Fungi (Basel) ; 7(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540749

ABSTRACT

Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...