Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Solut ; 34(1): 10-21, 2024 05.
Article in English | MEDLINE | ID: mdl-38426812

ABSTRACT

Science can provide accurate information to society to inform decision-making and behavior. One contemporary topic in which the science is very clear, yet behavioral change has lagged, is climate change mitigation. Climate change scientists use evidence-based research to advocate to the public to adopt emission-reducing behaviors in various sectors such as transportation and food. However, scientists themselves often do not change their own behaviors according to the scientific consensus. We present a case study of a group of natural sciences PhD students, who, when presented with evidence and an opportunity for a behavioral change with implications for climate change mitigation, demonstrated defensive reactions that would undoubtedly frustrate these same scientists if they were doing public outreach about their own work. Our goal is to raise awareness that we scientists do not always practice what we preach but could perhaps overcome this by understanding the defense mechanisms that impede meaningful change.

2.
FEMS Microbiol Ecol ; 98(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36251461

ABSTRACT

We examined microbial succession along a glacier forefront in the Antarctic Peninsula representing ∼30 years of deglaciation to contrast bacterial and eukaryotic successional dynamics and abiotic drivers of community assembly using sequencing and soil properties. Microbial communities changed most rapidly early along the chronosequence, and co-occurrence network analysis showed the most complex topology at the earliest stage. Initial microbial communities were dominated by microorganisms derived from the glacial environment, whereas later stages hosted a mixed community of taxa associated with soils. Eukaryotes became increasingly dominated by Cercozoa, particularly Vampyrellidae, indicating a previously unappreciated role for cercozoan predators during early stages of primary succession. Chlorophytes and Charophytes (rather than cyanobacteria) were the dominant primary producers and there was a spatio-temporal sequence in which major groups became abundant succeeding from simple ice Chlorophytes to Ochrophytes and Bryophytes. Time since deglaciation and pH were the main abiotic drivers structuring both bacterial and eukaryotic communities. Determinism was the dominant assembly mechanism for Bacteria, while the balance between stochastic/deterministic processes in eukaryotes varied along the distance from the glacier front. This study provides new insights into the unexpected dynamic changes and interactions across multiple trophic groups during primary succession in a rapidly changing polar ecosystem.


Subject(s)
Cyanobacteria , Microbiota , Ice Cover/microbiology , Eukaryota/genetics , Soil Microbiology , Ecosystem , Antarctic Regions , Soil/chemistry , Cyanobacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...