Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(12): 2221-2228, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34410413

ABSTRACT

ABSTRACT: Salmonella is a foodborne pathogen associated with poultry meat. This study aimed to determine the efficiency and quality attributes of two antimicrobial agents to reduce Salmonella on raw chicken meat when applied individually and in combination using an electrostatic spray cabinet. Thus, 5 log CFU/g of nonpathogenic, rifampin-resistant Salmonella Typhimurium was inoculated on skinless, boneless, raw chicken thigh meat and passed through an electrostatic spray cabinet while being sprayed with 5% lauric arginate (LAE), and 100, 1,000, 1,500, and 1,750 ppm of peracetic acid (PAA). Spraying of 5% LAE for 45 s significantly reduced Salmonella by 5 log (P < 0.05). The 1,500 ppm of PAA reduced Salmonella significantly within 45 s (1.157 log). Spraying of 1,500 ppm of PAA followed by LAE within 15 s reduced Salmonella significantly more than vice versa (P < 0.05). The color, water holding capacity, and texture did not differ significantly but resulted in significantly strong aroma and flavor. Both LAE and PAA efficiently reduced Salmonella when applied in an electrostatic spray cabinet on raw chicken thigh meat. The results suggest that the sequential order of application of antimicrobial agents is important to improve the safety and quality of raw chicken thigh meat.


Subject(s)
Anti-Infective Agents , Chickens , Animals , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Food Microbiology , Meat , Salmonella typhimurium , Static Electricity , Thigh
2.
Front Microbiol ; 10: 1043, 2019.
Article in English | MEDLINE | ID: mdl-31231315

ABSTRACT

Growth models are predominately used in the food industry to estimate the potential growth of selected microorganisms under environmental conditions. The growth kinetics, cellular morphology, and antibiotic resistance were studied throughout the life cycle of Salmonella Typhimurium. The effect of the previous life cycle phase [late log phase (LLP), early stationary phase (ESP), late stationary phase (LSP), and early death phase (EDP)] of Salmonella after reinoculation in brain heart infusion broth (BHI), ground chicken extract (GCE), and BHI at pH 5, 7, and 9 and salt concentrations 2, 3, and 4% was investigated. The growth media and previous life cycle phase had significant effects on the lag time (λ), specific growth rate (µ max), and maximum population density (Y max). At 2 and 4% salt concentration, the LLP had the significantly (p < 0.05) fastest µ max (1.07 and 0.69 log CFU/ml/h, respectively). As the cells transitioned from the late log phase (LLP) to the early death phase (EDP), the λ significantly (p < 0.05) increased. At pH 5 and 9, the EDP had a significantly (p < 0.05) lower Y max than the LLP, ESP, and LSP. As the cells transitioned from a rod shape to a coccoid shape in the EDP, the cells were more susceptible to antibiotics. The cells regained their resistance as they transitioned back to a rod shape from the EDP to the log and stationary phase. Our results revealed that growth kinetics, cell's length, shape, and antibiotic resistance were significantly affected by the previous life cycle phase. The results of this study also demonstrate that the previous life cycle should be considered when developing growth models of foodborne pathogens to better ensure the safety of poultry and poultry products.

3.
Poult Sci ; 96(8): 2845-2852, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28371846

ABSTRACT

This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time.


Subject(s)
Food Microbiology/methods , Meat/virology , Salmonella Phages/physiology , Salmonella/virology , Animals , Chickens , Salmonella/genetics , Serogroup , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...