Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 687: 817-826, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412485

ABSTRACT

Excess reactive nitrogen (Nr) deposition is occurring in Rocky Mountain National Park and impacting sensitive ecosystems. In 2006, the National Park Service, State of Colorado, and Environmental Protection Agency established the goal to reduce Nr deposition to below the ecosystem critical load by 2032. Progress is tracked using 5-year averages of annual wet inorganic nitrogen (IN) deposition measured at Loch Vale, Colorado, by the National Atmospheric Deposition Program (NADP). This remote high alpine site is challenging to operate, and large fractions of the annual precipitation, at times >40%, had invalid IN concentrations. Annual wet IN deposition is calculated using the NADP protocol, which replaces missing concentrations with the annual precipitation-weighted mean (PWM) concentration of valid samples. This protocol does not account for seasonal variations in IN concentrations and the inverse relationship between concentration and precipitation amounts. Invalid samples occurred more frequently in the winter and at high and low precipitation amounts, and the NADP protocol generally overestimated annual deposition rates, by as much as 20%. Here, a new method for imputing missing weekly IN concentrations that accounts for their seasonal and precipitation dependence is introduced. Using a bootstrapping analysis shows that the new method reduced the errors in the annual deposition rates by about 30% compared to the NADP protocol and the biases were near zero. The overall trend in the wet IN deposition rates was found to be flat from 1990 to 2017, but the nitrate contribution decreased about 33%, which was offset by a nearly equal increase in ammonium wet deposition. These trends are consistent with known changes in nitrate and ammonium precursor emissions. The long-term trends in the annual IN deposition rates were similar using both data imputation methods, but the 2013-2017 average was about 10% smaller using the new method.

2.
Environ Sci Technol ; 51(17): 9846-9855, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28758398

ABSTRACT

Carbonaceous compounds are a significant component of fine particulate matter and haze in national parks and wilderness areas where visibility is protected, i.e., class I areas (CIAs). The Regional Haze Rule set the goal of returning visibility in CIAs on the most anthropogenically impaired days to natural by 2064. To achieve this goal, we need to understand contributions of natural and anthropogenic sources to the total fine particulate carbon (TC). A Lagrangian chemical transport model was used to simulate the 2006-2008 contributions from various source types to measured TC in CIAs and other rural lands. These initial results were incorporated into a hybrid model to reduce systematic biases. During summer months, fires and vegetation-derived secondary organic carbon together often accounted for >75% of TC. Smaller contributions, <20%, from area and mobile sources also occurred. During the winter, contributions from area and mobile sources increased, with area sources accounting for half or more of the TC in many regions. The area emissions were likely primarily from residential and industrial wood combustion. Different fire seasons were evident, with the largest contributions during the summer when wildfires occur and smaller contributions during the spring and fall when prescribed and agricultural fires regularly occur.


Subject(s)
Carbon , Environmental Monitoring , Particulate Matter , Agriculture , Air Pollutants , Fires , Seasons , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...