Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 794
Filter
2.
Article in English | MEDLINE | ID: mdl-38977547

ABSTRACT

Nowadays, nickel oxide nanoparticles are in great demands owing to their use in many sectors. These nanoparticles may release into aquatic environment from different industries and cause negative effect on aquatic flora and fauna. Therefore, an effective and efficient method is required to remove these nanoparticles from contaminated water. Hence, the aim of this study was to bioremediate nickel oxide nanoparticles using a macrofungus, Pleurotus fossulatus, and to analyze its impact on fungal physiology. For this purpose, fungal spawns were inoculated in malt dextrose agar media containing different concentrations of nickel oxide nanoparticles (24 mg/l, 48 mg/l, and 100 mg/l) as well as control group (having no nickel oxide nanoparticles) and allowed to grow for a period of 20 days. Fungal mycelia as well as media were collected at different time intervals (5th day, 10th day, 15th day, and 20th day) for evaluation of Ni concentration and different biochemical parameters. Ni removal efficiency of P. fossulatus from media was found to be highest in 48 mg/l (66.98%) followed by 24 mg/l (60.83%) and 100 mg/l (18.03%), respectively. Increased level of metallothionein, lipid peroxidation, activity of different antioxidant enzymes (superoxide dismutase, catalase, glutathione s transferase, glutathione reductase), activity of ligninolytic enzymes (laccase, lignin peroxidase, manganese peroxidase), and shift in FTIR spectra were also reported in mycelia cultured in malt dextrose agar media containing nickel oxide nanoparticles. This study suggests that P. fossulatus has great efficiency to remediate nanoparticles from contaminated water and it can be utilized as potential agent in wastewater treatment plants by different industries.

3.
J Mass Spectrom ; 59(8): e5075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989744

ABSTRACT

Prinsepia utilis Royle, native to the Himalayas, is esteemed in Chinese and Indian folk medicine for its diverse medicinal benefits, targeting arthritis, pain relief, bone disorders, and joint discomfort. This study examined the 25% aqueous methanol extract of P. utilis leaves using UPLC-Q-TOF-MS/MS, identifying 78 metabolites, 76 of which were reported for the first time in P. utilis. These included 64 phenolics represented by 56 flavonoids, 5 phenolic acids, 3 phenolic glycosides, 4 terpenoids, 2 lignan glycosides, and 8 other compounds, expanding the knowledge of its chemical composition. These findings lay a foundation for further research, providing insights into potential bioactive compounds and opening avenues for applications in natural product drug discovery, traditional medicine, and nutraceutical development, leveraging the plant's established traditional uses.


Subject(s)
Flavonoids , Metabolomics , Plant Extracts , Plant Leaves , Tandem Mass Spectrometry , Plant Leaves/chemistry , Plant Leaves/metabolism , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Flavonoids/analysis , Phenols/analysis , Glycosides/analysis , Glycosides/metabolism , Metabolome , Terpenes/analysis , Terpenes/metabolism , Lignans/analysis , Lignans/metabolism , Hydroxybenzoates
4.
Am J Trop Med Hyg ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981466

ABSTRACT

Pure neuritic leprosy (PNL) often remains underdiagnosed due to the lack of simple, reliable diagnostic tools to detect Mycobacterium leprae. This study aimed to investigate the utility of multiplex polymerase chain reaction (MPCR) in easily accessible and less invasive biopsy sites, including skin biopsy samples and nasal swabs (NSs), to detect M. leprae. A total of 30 (N = 30) clinically suspected and untreated patients with PNL were recruited. Nasal swabs and skin biopsy samples from the innervation territory of an "enlarged nerve" were collected. DNA was extracted and subjected to MPCR (targeting leprae-specific repetitive element [RLEP], 16S rRNA, and SodA genes) and RLEP-PCR (individual gene PCR). The PCR products were analyzed by 3% agarose gel electrophoresis. In 30 patients with clinically suspected PNL, 60% (N = 18) of skin biopsy samples and 53% (N = 16) of NSs were found positive for M. leprae DNA by MPCR, whereas only 23.3% (N = 7) of skin biopsy samples and 10% (N = 3) of NSs were found positive by RLEP-PCR. MPCR demonstrated a greater positivity rate than did RLEP-PCR for detection of M. leprae. Serologic positivity for anti-natural disaccharide-octyl conjugated with bovine serum albumin (ND-O-BSA) antibodies was 80% (16/20), including 35% (7/20) of PNL patients for which the skin MPCR was negative. Both serologic positivity and skin MPCR positivity were observed in 65% of patients (N = 20). Multiplex polymerase chain reaction is a useful tool for detection for M. leprae in skin biopsy samples and NSs in clinically suspected cases of PNL, with the added advantages of being less invasive and technically easier than nerve biopsy.

5.
Cureus ; 16(6): e62609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027796

ABSTRACT

Introduction Academic dishonesty threatens the environs of medical education, wherein medical graduates are expected to exhibit professional honesty. Despite the efforts of institutions and governing bodies, the implementation of an environment of academic integrity is a challenge. We hypothesized that what medical students perceive as academic dishonesty might be different from the prevalent understanding of academic dishonesty among the teaching fraternity. This exploratory study was done to identify and explore in depth what constitutes cheating in the eyes of a medical student. Methods This qualitative study was planned as a semi-structured interview among undergraduate medical students in the second year of study (n=25). The dimensions studied were the individual perceptions of what constitutes cheating, self-reported responses with underlying reasoning to hypothetical academic cheating scenarios, and responses on instances of self-experienced or self-observed instances of academic dishonesty.  Results The responses indicate the ambiguous interpretation of academic honesty by students and four chief themes of the interpretation of dishonesty, based on student understanding. Our results identify core areas, such as the need for a clear and unambiguous institutional academic integrity policy, an environment of academic honesty, and strict enforcement of penalties for breach of ethical conduct, that need to be addressed to tackle the menace of academic dishonesty. Conclusion Themes derived from our study describe student factors, including trivialization of academic integrity, that lead to academic dishonesty. Advocacy for academic honesty in educational institutions must address these factors to enforce institutional standards.

6.
ACS Omega ; 9(28): 30270-30280, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035916

ABSTRACT

The increasing extent of greenhouse gas emissions has necessitated the development of techniques for atmospheric carbon dioxide removal and storage. Various techniques are being explored for carbon storage including geological sequestration. The geological sequestration has various avenues such as depleted oil and gas reservoirs, coal-bed methane reservoirs, and mafic and ultramafic rocks. Different trapping mechanisms are in play in these subsurface storage systems. In these sequestration sites, the mafic and ultramafic rocks are best suited for long-term and effective sequestration as they comprise minerals, conducive for chemical alteration, forming stable carbonates. However, these sites often suffer from distinct disadvantages of injectivity issues due to their low permeability and porosity. This study investigates the potential of sequestration in the rock samples obtained from one such site located in India. The rock samples are first characterized using various techniques including X-ray fluorescence, X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy (FESEM). The mineralogical characterization shows that the rock sample contains approximately 10% of diopside. The samples were put in the reactor chamber comprising CO2, which were then investigated using FESEM analysis. Additionally, a reservoir block simulation using commercial software was conducted with the representative minerals in the sample to evaluate the CO2 sequestration potential. The simulation result suggests the formation of magnesite which corresponds to a major part of CO2 mineral trapping. The reduced injectivity due to low porosity and permeability in this rock can be addressed using hydraulic fracturing. The geomechanical behavior of the rock sample for hydraulic fracturing is studied using the Brazilian disc test. The Monte Carlo-based uncertainty analysis was conducted using the tensile strength data of the sample. Results suggest that the most likely fracturing pressure is 2100 psi for this rock sample.

7.
Indian J Pediatr ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958921

ABSTRACT

An outbreak of Hand Foot and Mouth Disease (HFMD) which occurred in August-September, 2022 in Navi Mumbai, India was prospectively investigated, to delineate the clinical manifestations and identify the etiological agent. Molecular characterization at ICMR-National Institute of Virology (NIV), Mumbai unit reported 69 (88.5%) cases out of 78 clinically diagnosed HFMD cases positive for enteroviruses. Thirty-nine (56.5%) children were positive for CVA6, 11 (15.9%) for CVA16, and one for CVA4 (1.4%). One case of co-infection (CVA16, CVA6) was reported. Fourteen (17.9%) cases had recurrent disease in the same season. CVA6 was associated with unusual extension of the rash beyond the conventional areas of hands, feet, and mouth, with involvement of body areas including face, axillae and trunk. Whole genome sequencing classified CVA6 as group D3 and CVA16 isolates as group B1c. Co-infection and recurrence of disease with atypical symptoms observed in this study highlight the need for continued vigilance of the evolutionary clinical characteristics of the enteroviruses causing HFMD.

8.
Heliyon ; 10(12): e33281, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022021

ABSTRACT

There is a growing need to mainstream orphan or underutilized crops to enhance nutritional security and sustainable agriculture. Among these, Perilla frutescens L. is an important crop due to its rich nutritional and phytochemical content which makes it significant in nutrition, medicine, and industrial sector. Perilla seeds are mainly rich in ω-3 fatty acids, dietary fiber, amino acids, vitamins, and minerals, high α-linolenic acid, which contributes to their health benefits. This review explores the nutritional profile of perilla seeds and highlights its unique composition compared to other oilseed crops. It also analyzes the phytochemical components of perilla seeds and their various biological activities, including antioxidant, antidiabetic, antiobesity, cardioprotective, anticancer, antimicrobial, neuroprotective, and anti-inflammatory effects. These activities demonstrate the potential of perilla seeds in both pharmaceutical and food sectors. The review also covers recent advancements in genomics and transgenic research discussing potential areas for crop improvement. Additionally, it explores the use of perilla seeds in functional foods, blending perilla oil with other oils, and their applications in enhancing product formulations. This review offers valuable insights for researchers, students, policymakers, environmentalists, and industry professionals by detailing the potential of perilla seeds across various sectors. The findings support sustainable agriculture, crop diversification, and innovative product development, thus contributing to the integration of perilla into mainstream agriculture.

10.
Nat Commun ; 15(1): 5471, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942756

ABSTRACT

The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Francisella , Gene Editing , Humans , Gene Editing/methods , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Francisella/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Leber Congenital Amaurosis/genetics , Streptococcus pyogenes/genetics , HEK293 Cells , Mutation , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Protein Engineering/methods , Genome, Human
11.
Indian J Otolaryngol Head Neck Surg ; 76(3): 2895-2901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883551

ABSTRACT

Myofibrosarcoma is a distinct mesenchymal malignancy which commonly occurs in head and neck region. It has a high tendency for local recurrence and distant metastasis. 39-year-old male presented with epistaxis, nasal obstruction and left sided complete loss of vision. He underwent functional endoscopic sinus surgery and guided biopsy. MRI scan showed a lesion epicentred in the left maxillary sinus, superiorly extending into the orbit. He underwent Class 4b maxillectomy with neck dissection, tracheostomy and free flap reconstruction. Histopathological examination yielded final diagnosis as myofibrosarcoma of maxilla. The patient was planned for adjuvant radiotherapy and has been disease free for 3 years.

12.
Ind Psychiatry J ; 33(1): 101-107, 2024.
Article in English | MEDLINE | ID: mdl-38853811

ABSTRACT

Background: Behavioral and psychological symptoms of dementia (BPSD) influence dementia care significantly. BPSD can be affected by factors related to the patient's illness and socio-cultural background. Aim: This study aimed to find a relationship between BPSD with patients' socio-demographic and clinical profiles and their caregivers' distress in a tertiary care center. Materials and Methods: In this hospital-based cross-sectional study, the purposive sampling technique was used to select 100 dementia patients. A comprehensive record of socio-demographic and clinical details was made on a self-prepared semi-structured data sheet. The Neuropsychiatric Inventory Questionnaire was the principal tool to find the BPSD and related caregivers' distress. Results: The sample comprised predominantly Hindu (91%) male patients (66%) with Alzheimer's dementia (76%) coming from rural backgrounds (74%) and joint familial systems (96%), with a mean age of 71.77 ± 7.41 years. Patients' main caregivers were their children/children-in-law (65%). The severity of an overall BPSD and its variable individual domains were directly related to the duration of dementia, patients' age, their cognitive decline, and related decline in activities of living, as well as their caregivers' distress. In comparison to Alzheimer's disease patients, those with other dementia types had more impairment in cognitive functions and activities of daily living and they had a higher number and severity of BPSD. Conclusion: The advancing age, increased duration of dementia, and decline in cognition and related activities of daily living of the patients, as well as their caregivers' distress, are important correlates of BPSD. The findings are essential for the better management of dementia patients.

13.
Biol Trace Elem Res ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935257

ABSTRACT

S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and the ratio of SAM and SAH in Pb-exposed workers need to be assessed. In this study, we investigated the effects of Pb exposure on SAM, SAH, and methylation index (MI) in Pb-exposed workers with contemplation of lifestyle factors. Blood lead levels (BLLs), SAM, SAH, MI, and lifestyle factors were assessed in 338 male Pb-exposed workers. BLLs are estimated by ICP-OES method. SAM and SAH levels in serum were determined by ELISA method. The MI was calculated using SAM and SAH individual values. The lifestyle factors were collected using standard questionnaire. Levels of SAM and MI were significantly decreased with increased age, experience > 5 years, habits of tobacco chewing, smoking, alcohol consumption, and BLLs 10-30, 30-50, and > 50 µg/dL. Levels of SAH were significantly increased with increased age, habits of tobacco chewing and smoking, and BLLs 10-30, 30-50, and > 50 µg/dL. The association between BLLs and methylation index markers (SAM and MI) was reported as negative and significant. The association between BLLs and SAH was noted positive and significant. The influence of BLLs and lifestyle factors on SAM was noted at 12%, SAH at 35%, and MI at 27%, respectively. The highest percentage of influence was noted in SAH, followed by MI and SAM. In the workers exposed to Pb, lifestyle factors resulted in decreased SAM and MI and increased SAH levels. Adaptation of healthy lifestyle factors, personal hygiene practices, and use of PPE were suggested to minimize the reduction of methylation index markers.

14.
Int J Phytoremediation ; : 1-10, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832563

ABSTRACT

A study was carried out to evaluate phytodiversity along with the metal accumulation potential of native plants growing in the vicinity of a thermal power plant (TPP). We documented 26 tree species, six shrubs, and 35 herbs. Importance value index (IVI), which measures the extent to which a species dominates in an area, was found highest for Senna siamea (95.7) followed by Tectona grandis (56.5), and Pithecellobium dulce (19.6). Soil was acidic (pH 5.4) in nature with higher concentrations of Al and Fe. The pH of ground water was found acidic while pH of nearby river was found slightly alkaline. Values of PM2.5 and PM10 were slightly higher than NAAQS standards for industrial areas. The concentration of metals was found higher in aquatic plants than in terrestrial plants. In general, herbs and shrubs showed more metal accumulation potential than trees. Our results suggest that Senna siamea could be used for revegetation purposes in FA landfills. Further, terrestrial and aquatic plants such as Ageratina adenophora and Stuckenia pectinata could be used for reclamation of Mn, Zn, Al, and Fe from contaminated soils. Hydrilla verticillata (Ni and Mn), Nelumbo nucifera, and Ipomoea aquatica (Cr) can be used for metal removal from contaminated water.


The study focuses on the assessment of phytodiversity, soil and water analysis, ambient air quality, and bioaccumulation of heavy metals in plants growing in and around a thermal power plant. The study assumes significance as more than 65% of India's electricity generation is still by coal-fired power plants, having major implications for air, soil, and water pollution. By selecting native plant species adapted to the region, we can enhance biodiversity, restore habitats, and contribute to the overall ecological health of the area surrounding the power plant.

16.
Microbiol Res ; 285: 127758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38781787

ABSTRACT

The role of the plant innate immune system in the defense and symbiosis processes becomes integral in a complex network of interactions between plants and fungi. An understanding of the molecular characterization of the plant innate immune system is crucial because it constitutes plants' self-defense shield against harmful fungi, while creating mutualistic relationships with beneficial fungi. Due to the plant-induced awareness and their complexity of interaction with fungi, sufficient assessment of the participation of the plant innate immune system in ecological balance, agriculture, and maintenance of an infinite ecosystem is mandatory. Given the current global challenge, such as the surge of plant-infectious diseases, and pursuit of sustainable forms of agriculture; it is imperative to understand the molecular language of communication between plants and fungi. That knowledge can be practically used in diverse areas, e.g., in agriculture, new tactics may be sought after to try new methods that boost crop receptiveness against fungal pathogens and reduce the dependence on chemical management. Also, it could boost sustainable agricultural practices via enhancing mycorrhizal interactions that promote nutrient absorption and optimum cropping with limited exposure of environmental contamination. Moreover, this review offers insights that go beyond agriculture and can be manipulated to boost plant conservation, environmental restoration, and quality understanding of host-pathogen interactions. Consequently, this specific review paper has offered a comprehensive view of the complex plant innate immune-based responses with fungi and the mechanisms in which they interact.


Subject(s)
Fungi , Host-Pathogen Interactions , Immunity, Innate , Plant Diseases , Plant Immunity , Plants , Symbiosis , Fungi/immunology , Plants/immunology , Plants/microbiology , Plant Diseases/microbiology , Plant Diseases/immunology , Host-Pathogen Interactions/immunology , Symbiosis/immunology , Agriculture , Mycorrhizae/physiology , Ecosystem
17.
Microb Drug Resist ; 30(7): 279-287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727600

ABSTRACT

Invasive fungal infections in humans with compromised immune systems are the primary cause of morbidity and mortality, which is becoming more widely acknowledged. Amphotericin B (AmB) is one of the antifungal drugs used to treat such infections. AmB binds with plasma membrane ergosterol, inducing cellular ions to leak and causing cell death. Reduction in ergosterol content and modification of cell walls have been described as AmB resistance mechanisms. In addition, when the sphingolipid level is decreased, the cell becomes more susceptible to AmB. Previously, PDR16, a gene that encodes phosphatidylinositol transfer protein in Saccharomyces cerevisiae, was shown to enhance AmB resistance upon overexpression. However, the mechanism of PDR16-mediated AmB resistance is not clear. Here, in this study, it was discovered that a plasma membrane proteolipid 3 protein encoded by PMP3 is essential for PDR16-mediated AmB resistance. PDR16-mediated AmB resistance does not depend on ergosterol, but a functional sphingolipid biosynthetic pathway is required. Additionally, PMP3-mediated alteration in membrane integrity abolishes PDR16 mediated AmB resistance, confirming the importance of PMP3 in the PDR16 mediated AmB resistance.


Subject(s)
Amphotericin B , Antifungal Agents , Drug Resistance, Fungal , Ergosterol , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Sphingolipids/metabolism , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Microbial Sensitivity Tests , Cell Membrane/metabolism , Cell Membrane/drug effects
18.
Gynecol Oncol Rep ; 53: 101403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38746779

ABSTRACT

Arts have played a major role in women's cancer education and awareness. Developed countries continuously utilize arts for public health education initiatives and other endeavors. However, the utilization of arts to educate the public about the most prevalent cancer. i.e. cervical cancer and other common cancers in developing countries are sparse.

19.
Ultrason Sonochem ; 106: 106894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729035

ABSTRACT

Piper betel contains phytochemicals with diverse pharmacological effects. The objective of this study was to enhance the extraction efficiency of phytochemicals and the chlorophyll content using ultrasonication. The Box-Behnken design was employed to optimize the time (10, 20, 30 min), temperature (20, 30, and 40 °C), and solid-solvent ratio (1:10, 1:20, 1:30) by utilizing response surface methods with three independent variables. Multiple parameters, including extract yield, total phenol, total flavonoid, antioxidant activity, and chlorophyll content were used to optimize the conditions. The linear relationship between power intensity and responses was determined to be statistically significant, with a p-value less than 0.01. The interaction effect of temperature, time, and ratio of solid solvent was shown to be statistically significant (p < 0.05) for all the obtained results. The optimal parameters for achieving the highest extract yield were as follows: a temperature of 40 °C, a sonication time of 30 min, and a solid solvent ratio of 1:10. These conditions result in an extract yield of 21.99 %, a total flavonoid content of 44.97 mg/GAE, a total phenolic content of 185.05 mg/GAE, a DPPH scavenging activity of 99.1 %, and a chlorophyll content of 49.95 mg/ml. This study highlights the significance of customized extraction methodologies for optimizing the bioactive capacity of phytochemicals derived from betel leaves. The elucidation of extraction parameters and the resultant phytochemical profiles serves as a fundamental framework for the advancement of innovative pharmaceuticals and nutraceuticals, capitalizing on the therapeutic attributes of this traditional medicinal botanical.


Subject(s)
Phytochemicals , Ultrasonic Waves , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Antioxidants/isolation & purification , Antioxidants/chemistry , Chemical Fractionation/methods , Temperature , Sonication/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Piper betle/chemistry , Chlorophyll/isolation & purification , Chlorophyll/analysis
20.
ACS Omega ; 9(19): 21365-21377, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764641

ABSTRACT

Hydrated shale formations often lead to severe drilling problems and may lead to wellbore instability. These instabilities can result in issues such as bit balling, borehole collapse, formation damage, stuck pipe, and low drilling rates. Keeping these fundamental issues with drilling in shale formation in mind, this study is aimed at designing a water-based drilling fluid system for effective shale inhibition, ensuring enhanced wellbore stability and drilling efficiency. The designed mud system comprises a typical base fluid along with newly synthesized chitosan derivative chitosan-N-(2-hydroxyl)-propyl trimethylammonium chloride (HACC) as an additive. This additive was found to be soluble in water and conducive for shale inhibition. The derived product was characterized by field emission scanning electron microscopy, thermogravimetric analysis, and Fourier-transform infrared spectroscopy (FTIR). Various drilling fluid tests, including filtration and rheological experiments, were conducted to evaluate its proficiency as a drilling mud additive. The results showed improvement in rheological and filtration properties after hot rolling at 100 °C in comparison to a conventional shale inhibitor, polyethylenimine. As we increase the concentration of synthesized chitosan derivative from 0.3 to 1.5 w/v%, the filtration loss is reduced from 40% to 65% as compared to the base fluids. Shale recovery tests were also conducted using shale samples from an Indian field to assess its viability for field application. The addition of 0.3 to 1.5 w/v% chitosan derivative resulted in high shale recovery above 88% to 96% at 100 °C compared to polyethylenimine, which showed a change in recovery from 62% to 73%. HACC intercalates into clay platelets, reducing the interlayer spacing between particles and preventing clay from hydrating and swelling. This mechanism of inhibition is evaluated by X-ray diffraction, FTIR, and zeta potential analysis. This bolsters the hypothesis of using the synthesized chitosan derivative as a shale inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...