Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Monit ; 29: e941112, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37872747

ABSTRACT

BACKGROUND The regeneration of bone defects is indicated to restore lost tissue mass and functionality. Ostim®, an absorbable nanocrystalline hydroxyapatite (NCHA) paste, is indicated to enhance bone regeneration in bone defects due to trauma or surgery. This retrospective study of 110 patients with long-bone fracture defects presenting at a single trauma center between 2010 and 2012 aimed to compare outcomes with and without the use of Ostim® absorbable nanocrystalline hydroxyapatite paste. MATERIAL AND METHODS The study encompassed fractures in 110 patients - 55 patients received any defect augmentation (ED) and 55 patients were treated with NCHA augmentation. Fractures were located at the distal radius (66.4%, n=73), proximal humerus (5.5%, n=6), and proximal tibia (28.2%, n=31). Evaluating the clinical follow-up, the study encompassed post-surgery complications (eg, non-unions, infection). Bone healing was evaluated by conventional radiographs. RESULTS Postoperative complications occurred in 45.5% of patients regardless of the treatment (P=1.0). The non-union rate in both groups was 5.5% (n=8, P=1.0), and the risk for infection was lower in the NCHA group (3.6%, ED: n=3, NCHA: n=1, p=0.62). Patients suffered open fractures were treated in the NCHA group (100%, n=7, P=0.003). Radiological assessment demonstrated comparable healing of the fracture border, fracture gap, and articular surface (P>0.05). CONCLUSIONS The findings from this retrospective study support previous studies that have shown Ostim® absorbable nanocrystalline hydroxyapatite paste enhances outcomes and reduces the risk of complications when used to repair bone defects in long-bone fractures in trauma patients. NCHA paste augmentation is suitable for use in traumatic long-bone fractures.


Subject(s)
Bone Substitutes , Fractures, Bone , Humans , Retrospective Studies , Bone Substitutes/therapeutic use , Bone Substitutes/chemistry , Case-Control Studies , Fractures, Bone/drug therapy , Fractures, Bone/surgery , Durapatite/therapeutic use , Durapatite/chemistry , Fracture Healing , Treatment Outcome
2.
Biomedicines ; 11(10)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37893234

ABSTRACT

To date, insufficient investigation has been carried out on the biocompatibility of synthetic bioactive bone substitute materials after traumatically induced bone fractures in clinical conditions. This study encompasses the safety, resorption, healing process, and complications of surgical treatment. Our current hypothesis posits that calcium phosphate-based bone substitutes could improve bone healing. In this retrospective case-control study, over 290 patients who underwent surgical treatment for acute fractures were examined. Bone defects were augmented with calcium phosphate-based bone substitute material (CP) in comparison to with empty defect treatment (ED) between 2011 and 2018. A novel scoring system for fracture healing was introduced to assess bone healing in up to six radiological follow-up examinations. Furthermore, demographic data, concomitant diseases, and complications were subjected to analysis. Data analysis disclosed significantly fewer postoperative complications in the CP group relative to the ED group (p < 0.001). The CP group revealed decreased risks of experiencing complications (p < 0.001), arthrosis (p = 0.01), and neurological diseases (p < 0.001). The fracture edge, the fracture gap, and the articular surface were definably enhanced. Osteosynthesis and general bone density demonstrated similarity (p > 0.05). Subgroup analysis focusing on patients aged 64 years and older revealed a diminished complication incidence within the CP group (p = 0.025). Notably, the application of CP bone substitute materials showed discernible benefits in geriatric patients, evident by decreased rates of pseudarthrosis (p = 0.059). Intermediate follow-up evaluations disclosed marked enhancements in fracture gap, edge, and articular surface conditions through the utilization of CP-based substitutes (p < 0.05). In conclusion, calcium phosphate-based bone substitute materials assert their clinical integrity by demonstrating safety in clinical applications. They substantiate an accelerated early osseous healing trajectory while concurrently decreasing the severity of complications within the bone substitute cohort. In vivo advantages were demonstrated for CP bone graft substitutes.

3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762534

ABSTRACT

Male patients often experience increased bone and muscle loss after traumatic fractures. This study aims to compare the treatment outcomes of male and female patients with large bone defects. A total of 345 trauma patients underwent surgery, with participants divided into two groups: one receiving bone substitute material (BSM) for augmented defects (n = 192) and the other without augmentation (empty defects = ED, n = 153). Outcome parameters were assessed among female (n = 184) and male (n = 161) patients. Descriptive statistics revealed no significant differences between male and female patients. Approximately one-half of the fractures resulted from high-energy trauma (n = 187). The BSM group experienced fewer complications (p = 0.004), including pseudarthrosis (BSM: n = 1, ED: n = 7; p = 0.02). Among female patients over 65, the incidence of pseudarthrosis was lower in the BSM group (p = 0.01), while younger females showed no significant differences (p = 0.4). Radiologically, we observed premature bone healing with subsequent harmonization. Post hoc power analysis demonstrated a power of 0.99. Augmenting bone defects, especially with bone substitute material, may reduce complications, including pseudarthrosis, in female patients. Additionally, this material accelerates bone healing. Further prospective studies are necessary for confirmation.


Subject(s)
Bone Substitutes , Fractures, Bone , Pseudarthrosis , Humans , Female , Male , Pseudarthrosis/epidemiology , Pseudarthrosis/etiology , Bone Substitutes/therapeutic use , Prospective Studies , Retrospective Studies , Fractures, Bone/surgery
4.
Medicina (Kaunas) ; 59(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837565

ABSTRACT

Background and Objectives: he treatment of large bone defects in geriatric patients often presents a major surgical challenge because of age-related bone loss. In such patients, the scarcity of healthy makes autologous grafting techniques hard to perform. On the one hand, clinicians' fear of possible infections limits using bone substitute materials (BSM). On the other hand, BSM is limitless and spares patients another surgery to harvest autologous material. Materials and Methods: To address the aptness of BSM in geriatric patients, we performed a retrospective analysis of all patients over the age of 64 years who visited our clinic between the years 2011-2018. The study assessed postoperative complications clinically and healing results radiologically. The study included 83 patients with bone defects at the distal radius, proximal humerus, and proximal tibia. The defect zones were filled with BSM based on either nanocrystalline hydroxyapatite (NHA) or calcium phosphate (CP). For comparison, a reference group (empty defect, ED) without the void filling with a BSM was also included. Results: 106 patients sustained traumatic fractures of the distal radius (71.7%), proximal humerus (5.7%), and proximal tibia (22.6%). No difference was found between the BSM groups in infection occurrence (p = 1.0). Although not statistically significant, the BSM groups showed a lower rate of pseudarthrosis (p = 0.09) compared with the ED group. Relative risk (RR) of complications was 32.64% less in the BSM groups compared with the ED group. The additional beneficial outcome of BSM was demonstrated by calculating the number needed to treat (NNT). The calculation showed that with every six patients treated, at least one complication could be avoided. Radiological assessment of bone healing showed significant improvement in the bridging of the defect zone (p < 0.001) when BSM was used. Conclusions: In contrast to previous studies, the study showed that BSM could support bone healing and does not present an infection risk in geriatric patients. The NNT calculation indicates a wider potential benefit of BSM.


Subject(s)
Bone Substitutes , Fractures, Bone , Male , Humans , Aged , Middle Aged , Retrospective Studies , Fractures, Bone/surgery , Humerus , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...