Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1147424, 2023.
Article in English | MEDLINE | ID: mdl-36938016

ABSTRACT

Unpredictable weather vagaries in the Asian tropics often increase the risk of a series of abiotic stresses in maize-growing areas, hindering the efforts to reach the projected demands. Breeding climate-resilient maize hybrids with a cross-tolerance to drought and waterlogging is necessary yet challenging because of the presence of genotype-by-environment interaction (GEI) and the lack of an efficient multi-trait-based selection technique. The present study aimed at estimating the variance components, genetic parameters, inter-trait relations, and expected selection gains (SGs) across the soil moisture regimes through genotype selection obtained based on the novel multi-trait genotype-ideotype distance index (MGIDI) for a set of 75 tropical pre-released maize hybrids. Twelve traits including grain yield and other secondary characteristics for experimental maize hybrids were studied at two locations. Positive and negative SGs were estimated across moisture regimes, including drought, waterlogging, and optimal moisture conditions. Hybrid, moisture condition, and hybrid-by-moisture condition interaction effects were significant (p ≤ 0.001) for most of the traits studied. Eleven genotypes were selected in each moisture condition through MGIDI by assuming 15% selection intensity where two hybrids, viz., ZH161289 and ZH161303, were found to be common across all the moisture regimes, indicating their moisture stress resilience, a unique potential for broader adaptation in rainfed stress-vulnerable ecologies. The selected hybrids showed desired genetic gains such as positive gains for grain yield (almost 11% in optimal and drought; 22% in waterlogging) and negative gains in flowering traits. The view on strengths and weaknesses as depicted by the MGIDI assists the breeders to develop maize hybrids with desired traits, such as grain yield and other yield contributors under specific stress conditions. The MGIDI would be a robust and easy-to-handle multi-trait selection process under various test environments with minimal multicollinearity issues. It was found to be a powerful tool in developing better selection strategies and optimizing the breeding scheme, thus contributing to the development of climate-resilient maize hybrids.

2.
Front Plant Sci ; 13: 869270, 2022.
Article in English | MEDLINE | ID: mdl-35712555

ABSTRACT

Being a widely cultivated crop globally under diverse climatic conditions and soil types, maize is often exposed to an array of biotic and abiotic stresses. Soil salinity is one of the challenges for maize cultivation in many parts of lowland tropics that significantly affects crop growth and reduces economic yields. Breeding strategies integrated with molecular approach might accelerate the process of identifying and developing salinity-tolerant maize cultivars. In this study, an association mapping panel consisting of 305 diverse maize inbred lines was phenotyped in a managed salinity stress phenotyping facility at International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates (UAE). Wide genotypic variability was observed in the panel under salinity stress for key phenotypic traits viz., grain yield, days to anthesis, anthesis-silking interval, plant height, cob length, cob girth, and kernel number. The panel was genotyped following the genome-based sequencing approach to generate 955,690 SNPs. Total SNPs were filtered to 213,043 at a call rate of 0.85 and minor allele frequency of 0.05 for association analysis. A total of 259 highly significant (P ≤ 1 × 10-5) marker-trait associations (MTAs) were identified for seven phenotypic traits. The phenotypic variance for MTAs ranged between 5.2 and 9%. A total of 64 associations were found in 19 unique putative gene expression regions. Among them, 12 associations were found in gene models with stress-related biological functions.

3.
Sci Rep ; 11(1): 13730, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215789

ABSTRACT

With progressive climate change and the associated increase in mean temperature, heat stress tolerance has emerged as one of the key traits in the product profile of the maize breeding pipeline for lowland tropics. The present study aims to identify the genomic regions associated with heat stress tolerance in tropical maize. An association mapping panel, called the heat tolerant association mapping (HTAM) panel, was constituted by involving a total of 543 tropical maize inbred lines from diverse genetic backgrounds, test-crossed and phenotyped across nine locations in South Asia under natural heat stress. The panel was genotyped using a genotyping-by-sequencing (GBS) platform. Considering the large variations in vapor pressure deficit (VPD) at high temperature (Tmax) across different phenotyping locations, genome-wide association study (GWAS) was conducted separately for each location. The individual location GWAS identified a total of 269 novel significant single nucleotide polymorphisms (SNPs) for grain yield under heat stress at a p value of < 10-5. A total of 175 SNPs were found in 140 unique gene models implicated in various biological pathway responses to different abiotic stresses. Haplotype trend regression (HTR) analysis of the significant SNPs identified 26 haplotype blocks and 96 single SNP variants significant across one to five locations. The genomic regions identified based on GWAS and HTR analysis considering genomic region x environment interactions are useful for breeding efforts aimed at developing heat stress resilient maize cultivars for current and future climatic conditions through marker-assisted introgression into elite genetic backgrounds and/or genome-wide selection.


Subject(s)
Genome, Plant , Thermotolerance/genetics , Zea mays/genetics , Alleles , Genome-Wide Association Study , Haplotypes , Tropical Climate
4.
BMC Genomics ; 22(1): 154, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663389

ABSTRACT

BACKGROUND: Heat tolerance is becoming increasingly important where maize is grown under spring season in India which coincide with grain filling stage of crop resulting in tassel blast, reduced pollen viability, pollination failure and barren ears that causes devastating yield losses. So, there is need to identify the genomic regions associated with heat tolerance component traits which could be further employed in maize breeding program. RESULTS: An association mapping panel, consisting of 662 doubled haploid (DH) lines, was evaluated for yield contributing traits under normal and natural heat stress conditions. Genome wide association studies (GWAS) carried out using 187,000 SNPs and 130 SNPs significantly associated for grain yield (GY), days to 50% anthesis (AD), days to 50% silking (SD), anthesis-silking interval (ASI), plant height (PH), ear height (EH) and ear position (EPO) were identified under normal conditions. A total of 46 SNPs strongly associated with GY, ASI, EH and EPO were detected under heat stress conditions. Fifteen of the SNPs was found to have common association with more than one trait such as two SNPs viz. S10_1,905,273 and S10_1,905,274 showed colocalization with GY, PH and EH whereas S10_7,132,845 SNP associated with GY, AD and SD under normal conditions. No such colocalization of SNP markers with multiple traits was observed under heat stress conditions. Haplotypes trend regression analysis revealed 122 and 85 haplotype blocks, out of which, 20 and 6 haplotype blocks were associated with more than one trait under normal and heat stress conditions, respectively. Based on SNP association and haplotype mapping, nine and seven candidate genes were identified respectively, which belongs to different gene models having different biological functions in stress biology. CONCLUSIONS: The present study identified significant SNPs and haplotype blocks associated with yield contributing traits that help in selection of donor lines with favorable alleles for multiple traits. These results provided insights of genetics of heat stress tolerance. The genomic regions detected in the present study need further validation before being applied in the breeding pipelines.


Subject(s)
Thermotolerance , Zea mays , Genome-Wide Association Study , India , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Zea mays/genetics
5.
PLoS One ; 10(4): e0124350, 2015.
Article in English | MEDLINE | ID: mdl-25884393

ABSTRACT

Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs.


Subject(s)
Quantitative Trait Loci , Rain , Zea mays/genetics , Chlorophyll/metabolism , Chromosomes, Plant/genetics , Fertility/genetics , Genes, Plant , Genetic Association Studies , Genetic Linkage , High-Throughput Screening Assays , Inbreeding , Phenotype , Physical Chromosome Mapping , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Seed Bank , Stress, Physiological , Zea mays/growth & development , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...