Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38432581

ABSTRACT

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Protein-Arginine N-Methyltransferases , Male , Animals , Mice , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , CRISPR-Cas Systems , Genes, Essential , Early Detection of Cancer
2.
J Proteome Res ; 23(2): 633-643, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38183416

ABSTRACT

One of the main challenges in compiling the complete collection of protein antigens from pathogens for the selection of vaccine candidates or intervention targets is to acquire a broad enough representation of them to be recognized by the highly diversified immunoglobulin repertoire in human populations. Dried serum spot sampling (DSS) retains a large repertoire of circulating immunoglobulins from each individual that can be representative of a population, according to the sample size. In this work, shotgun proteomics of an infectious pathogen based on DSS sampling coupled with IgM immunoprecipitation, liquid chromatography-mass spectrometry (LC-MS/MS), and bioinformatic analyses was combined to characterize the circulating IgM antigenome. Serum samples from a malaria endemic region at different clinical statuses were studied to optimize IgM binding efficiency and antibody leaching by varying serum/immunomagnetic bead ratios and elution conditions. The method was validated using Plasmodium falciparum extracts identifying 110 of its IgM-reactive antigens while minimizing the presence of human proteins and antibodies. Furthermore, the IgM antigen recognition profile differentiated between malaria-infected and noninfected individuals at the time of sampling. We conclude that a shotgun proteomics approach offers advantages in providing a high-throughput, reliable, and clean way to identify IgM-recognized antigens from trace amounts of serum. The mass spectrometry raw data and metadata have been deposited with ProteomeXchange via MassIVE with the PXD identifier PXD043800.


Subject(s)
Communicable Diseases , Malaria , Humans , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Immunoglobulin M
3.
Leukemia ; 37(8): 1649-1659, 2023 08.
Article in English | MEDLINE | ID: mdl-37422594

ABSTRACT

Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Humans , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , RNA Splicing , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...