Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 250: 873-882, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31085473

ABSTRACT

The potential presence of nanoplastics (NP) in aquatic environments represents a growing concern regarding their possible effects on aquatic organisms. The objective of this study was to assess the impact of polystyrene (PS) amino-modified particles (50  nm PSNH2) on the cellular and metabolic responses of the diatom Chaetoceros neogracile cultures at two essential phases of the growth cycle, i.e. exponential (division) and stationary (storage) phases. Both cultures were exposed for 4 days to low (0.05 µg mL-1) and high (5 µg mL-1) concentrations of PS-NH2. Exposure to NP impaired more drastically the major cellular and physiological parameters during exponential phase than during the stationary phase. Only an increase in ROS production was observed at both culture phases following NP exposures. In exponential phase cultures, large decreases in chlorophyll content, esterase activity, cellular growth and photosynthetic efficiency were recorded upon NP exposure, which could have consequences on the diatoms life cycle and higher food-web levels. The observed differential responses to NP exposure according to culture phase could reflect i) the higher concentration of Transparent Exopolymer Particles (TEP) at stationary phase leading to NP aggregation and thus, probably minimizing NP effects, and/or ii) the fact that dividing cells during exponential phase may be intrinsically more sensitive to stress. This work evidenced the importance of algae physiological state for assessing the NP impacts with interactions between NP and TEP being one key factor affecting the fate of NP in algal media and their impact to algal' cells.


Subject(s)
Diatoms/drug effects , Extracellular Polymeric Substance Matrix/metabolism , Nanoparticles/toxicity , Oxidative Stress/drug effects , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyll/metabolism , Diatoms/growth & development , Diatoms/metabolism , Dose-Response Relationship, Drug , Food Chain , Models, Theoretical , Particle Size
2.
PeerJ ; 4: e1829, 2016.
Article in English | MEDLINE | ID: mdl-27069786

ABSTRACT

Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2-28% and 16-82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms.

3.
Phytopathology ; 104(3): 293-305, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24073639

ABSTRACT

Powdery mildew would be one of the most damaging wheat diseases without the extensive use of conventional fungicides. Some of the alternative control strategies currently emerging are based on the use of resistance inducers. The disacharride trehalose (TR) is classically described as an inducer of defenses in plants to abiotic stress. In this work, the elicitor or priming effect of TR was investigated in wheat both before and during a compatible wheat-powdery mildew interaction through molecular, biochemical, and cytological approaches. In noninoculated conditions, TR elicited the expression of genes encoding chitinase (chi, chi1, and chi4 precursor), pathogenesis-related protein 1, as well as oxalate oxidase (oxo). Moreover, lipid metabolism was shown to be altered by TR spraying via the upregulation of lipoxygenase (lox) and lipid-transfer protein (ltp)-encoding gene expression. On the other hand, the protection conferred by TR to wheat against powdery mildew is associated with the induction of two specific defense markers. Indeed, in infectious conditions following TR spraying, upregulations of chi4 precursor and lox gene expression as well as an induction of the LOX activity were observed. These results are also discussed with regard to the impact of TR on the fungal infectious process, which was shown to be stopped at the appressorial germ tube stage. Our findings strongly suggest that TR is a true inducer of wheat defense and resistance, at least toward powdery mildew.


Subject(s)
Ascomycota/physiology , Gene Expression Regulation, Plant/drug effects , Plant Diseases/immunology , Plant Proteins/genetics , Trehalose/pharmacology , Triticum/drug effects , Ascomycota/growth & development , Chitinases/genetics , Chitinases/metabolism , Host-Pathogen Interactions , Lipoxygenase/genetics , Lipoxygenase/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Spores, Fungal , Triticum/genetics , Triticum/immunology , Triticum/microbiology , Up-Regulation/drug effects
4.
Environ Microbiol ; 12(10): 2755-72, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20482742

ABSTRACT

As agents of mortality, viruses and nanoflagellates impact on picoplankton populations. We examined the differences in interactions between these compartments in two French Atlantic bays. Microbes, considered here as central actors of the planktonic food web, were first monitored seasonally in Arcachon (2005) and Marennes-Oléron (2006) bays. Their dynamics were evaluated to categorize trophic periods using the models of Legendre and Rassoulzadegan as a reference framework. Microbial interactions were then compared through 48 h batch culture experiments performed during the phytoplankton spring bloom, identified as herbivorous in Marennes and multivorous in Arcachon. Marennes was spatially homogeneous compared with Arcachon. The former was potentially more productive, featuring a large number of heterotrophic pathways, while autotrophic mechanisms dominated in Arcachon. A link was found between viruses and phytoplankton in Marennes, suggesting a role of virus in the regulation of autotroph biomass. Moreover, the virus-bacteria relation was weaker in Marennes, with a bacterial lysis potential of 2.6% compared with 39% in Arcachon. The batch experiments (based on size-fractionation and viral enrichment) revealed different microbial interactions that corresponded to the spring-bloom trophic interactions in each bay. In Arcachon, where there is a multivorous web, flagellate predation and viral lysis acted in an opposite way on picophytoplankton. When together they both reduced viral production. Conversely, in Marennes (herbivorous web), flagellates and viruses together increased viral production. Differences in the composition of the bacterial community composition explained the combined flagellate-virus effects on viral production in the two bays.


Subject(s)
Aquatic Organisms/growth & development , Food Chain , Plankton/growth & development , Aquatic Organisms/virology , Bacteria/enzymology , Bacteria/growth & development , Bacteria/virology , Biomass , Dinoflagellida/growth & development , Ecosystem , Flagella , Plankton/virology , Seasons , Viruses/growth & development
5.
Nature ; 446(7139): 1070-4, 2007 Apr 26.
Article in English | MEDLINE | ID: mdl-17460670

ABSTRACT

The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.


Subject(s)
Carbon/metabolism , Iron/metabolism , Phytoplankton/metabolism , Seawater/chemistry , Atmosphere/chemistry , Carbon Dioxide/metabolism , Chlorophyll/analysis , Chlorophyll A , Diffusion , Geography , Oceans and Seas , Partial Pressure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...