Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Environ Microbiol ; 26(6): e16666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889760

ABSTRACT

Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.


Subject(s)
Bacteria , Carbon Cycle , Carbon Dioxide , Polymerase Chain Reaction , Soil Microbiology , Soil , Carbon Dioxide/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Polymerase Chain Reaction/methods , Soil/chemistry , Wetlands , Phototrophic Processes
2.
Water Res ; 245: 120547, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37708771

ABSTRACT

Mountain lakes provide clear drinking water to humankind but are strongly impacted by global change. Benthic biofilms are crucial for maintaining water quality in these oligotrophic lakes, yet little is known about the effects of global change on mountain biofilm communities. By combining analyses of metabarcoding data on 16S and 18S rRNA genes with climatic and environmental data, we investigated global change effects on the composition of biofilm prokaryotic and micro-eukaryotic assemblages in a five-year monitoring program of 26 Pyrenean lakes (2016-2020). Using time-decay relationships and within-lake dissimilarity modelling, we show that the composition of both prokaryotic and micro-eukaryotic biofilm communities significantly shifted and their biodiversity declined from 2016 to 2020. In particular, analyses of temporal trends with linear mixed models indicated an increase in the richness and relative abundance of cyanobacteria, including potentially toxigenic cyanobacteria, and a concomitant decrease in diatom richness and relative abundance. While these compositional shifts may be due to several drivers of global change acting simultaneously on mountain lake biota, water pH and hardness were, from our data, the main environmental variables associated with changes for both prokaryotic and micro-eukaryotic assemblages. Water pH and hardness increased in our lakes over the study period, and are known to increase in Pyrenean lakes due to the intensification of rock weathering as a result of climate change. Given predicted climate trends and if water pH and hardness do cause some changes in benthic biofilms, those changes might be further exacerbated in the future. Such biofilm compositional shifts may induce cascading effects in mountain food webs, threatening the resilience of the entire lake ecosystem. The rise in potentially toxigenic cyanobacteria also increases intoxication risks for humans, pets, wild animals, and livestock that use mountain lakes. Therefore, our study has implications for water quality, ecosystem health, public health, as well as local economies (pastoralism, tourism), and highlights the possible impacts of global change on mountain lakes.

3.
Sci Total Environ ; 903: 166225, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37586524

ABSTRACT

Snow-farming is one of the adaptive strategies used to face the snow deficit in ski resorts. We studied the impact of a shifting snow-farming technique on a pasture slope in Adelboden, Switzerland. Specifically, we compared plots covered by a compressed snow pile for 1.5, 2.5 or 3.5 years, which then recovered from the snow cover for three, two or one vegetation seasons, respectively, with control plots situated around the snow pile. In plots with >1.5 years of compressed snow pile, plant mortality was high, recovery of vegetation was very slow, and few plant species recolonized the bare surface. Soil biological activity decreased persistently under prolonged snow cover, as indicated by reduced soil respiration. The prolonged absence of fresh plant litter and root exudates led to carbon (C) limitation for soil microbial respiration, which resulted in a significant decrease in the ratio of total organic carbon to total nitrogen (TOC/TN) under the snow pile. Microbial C, nitrogen (N) and phosphorus (P) immobilization decreased, while dissolved N concentration increased with compressed snow cover. Longer snow cover and a subsequent shorter recovery period led to higher microbial C/P and N/P but lower microbial C/N. Nitrate and ammonium were released massively once the biological activity resumed after snow clearance and soil aeration. The soil microbial community composition persistently shifted towards oxygen-limited microbes with prolonged compressed snow cover. This shift reflected declines in the abundance of sensitive microorganisms, such as plant-associated symbionts, due to plant mortality or root die-off. In parallel, resistant taxa that benefit from environmental changes increased, including facultative anaerobic bacteria (Bacteroidota, Chloroflexota), obligate anaerobes (Euryarchaeota), and saprophytic plant degraders. We recommend keeping snow piles in the same spot year after year to minimize the area of the impacted soil surface and plan from the beginning soil and ecosystem restoration measures.

4.
Sci Adv ; 9(35): eadi4029, 2023 09.
Article in English | MEDLINE | ID: mdl-37647404

ABSTRACT

The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.


Subject(s)
Longevity , Metabolome , Phenotype , Plant Leaves
5.
Glob Chang Biol ; 29(23): 6772-6793, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37578632

ABSTRACT

In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.


Subject(s)
Sphagnopsida , Tracheophyta , Ecosystem , Siberia , Europe , Soil , Water
6.
New Phytol ; 237(4): 1164-1178, 2023 02.
Article in English | MEDLINE | ID: mdl-36336780

ABSTRACT

Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.


Subject(s)
Ecosystem , Sphagnopsida , Sphagnopsida/physiology , Carbon Dioxide/metabolism , Climate Change , Biological Transport , Plants/metabolism
7.
Sci Rep ; 12(1): 8392, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589855

ABSTRACT

The predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities' direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function. We followed macroinvertebrate predator and prey biomass to characterize the recovery dynamics of trophic structure (i.e. predator-prey biomass ratio) during the post-drought rewetting phase. We showed that drought significantly affects the trophic structure of macroinvertebrates by reducing the predator-prey biomass ratio. The asynchronous recovery of predator and prey biomass appeared as a critical driver of the post-drought recovery trajectory of trophic structure. Litter decomposition rate, which is an essential ecosystem function, remained stable after drought events, indicating the presence of compensatory effects between detritivores biomass and detritivores feeding activity. We conclude that, in a context of global change, the asynchrony in post-drought recovery of different trophic levels may impact the overall drought resilience of small freshwater ecosystems in a more complex way than expected.


Subject(s)
Droughts , Ecosystem , Biomass , Climate Change , Food Chain
8.
J Hazard Mater ; 431: 128613, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35359102

ABSTRACT

Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).


Subject(s)
Nanotubes, Carbon , Oligochaeta , Soil Pollutants , Animals , Metals/toxicity , Nanotubes, Carbon/toxicity , Soil/chemistry , Soil Pollutants/analysis
9.
New Phytol ; 234(1): 64-76, 2022 04.
Article in English | MEDLINE | ID: mdl-35103312

ABSTRACT

Soil photoautotrophic prokaryotes and micro-eukaryotes - known as soil algae - are, together with heterotrophic microorganisms, a constitutive part of the microbiome in surface soils. Similar to plants, they fix atmospheric carbon (C) through photosynthesis for their own growth, yet their contribution to global and regional biogeochemical C cycling still remains quantitatively elusive. Here, we compiled an extensive dataset on soil algae to generate a better understanding of their distribution across biomes and predict their productivity at a global scale by means of machine learning modelling. We found that, on average, (5.5 ± 3.4) × 106 algae inhabit each gram of surface soil. Soil algal abundance especially peaked in acidic, moist and vegetated soils. We estimate that, globally, soil algae take up around 3.6 Pg C per year, which corresponds to c. 6% of the net primary production of terrestrial vegetation. We demonstrate that the C fixed by soil algae is crucial to the global C cycle and should be integrated into land-based efforts to mitigate C emissions.


Subject(s)
Carbon Cycle , Soil , Carbon , Ecosystem , Plants
10.
ISME Commun ; 2(1): 64, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-37938283

ABSTRACT

Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.

11.
Environ Microbiol ; 23(11): 6811-6827, 2021 11.
Article in English | MEDLINE | ID: mdl-34559454

ABSTRACT

Phototrophic microbes are widespread in soils, but their contribution to soil carbon (C) uptake remains underexplored in most terrestrial systems, including C-accreting systems such as peatlands. Here, by means of metabarcoding and ecophysiological measurements, we examined how microbial photosynthesis and its biotic (e.g., phototrophic community structure, biomass) and abiotic drivers (e.g., Sphagnum moisture, light intensity) vary across peatland microhabitats. Using a natural gradient of microhabitat conditions from pool to forest, we show that the structure of phototrophic microbial communities shifted from a dominance of eukaryotes in pools to prokaryotes in forests. We identified five groups of co-occurring phototrophic operational taxonomic units with specific environmental preferences across the gradient. Along with such structural changes, we found that microbial C uptake was the highest in the driest and shadiest microhabitats. This study renews and improves current views on phototrophic microbes in peatlands, as the contribution of microbial photosynthesis to peatland C uptake has essentially been studied in wet microhabitats.


Subject(s)
Sphagnopsida , Forests , Photosynthesis , Soil/chemistry , Soil Microbiology
12.
Glob Chang Biol ; 27(19): 4711-4726, 2021 10.
Article in English | MEDLINE | ID: mdl-34164885

ABSTRACT

Northern peatlands store a globally significant amount of soil organic carbon, much of it found in rapidly thawing permafrost. Permafrost thaw in peatlands often leads to the development and expansion of thermokarst bogs, where microbial activity will determine the stability of the carbon storage and the release of greenhouse gases. In this study, we compared potential enzyme activities between young (thawed ~30 years ago) and mature (~200 years) thermokarst bogs, for both shallow and deep peat layers. We found very low potential enzyme activities in deep peat layers, with no differences between the young and mature bogs. Peat quality at depth was found to be highly humified (FTIR analysis) in both the young and mature bogs. This suggests that deep, old peat was largely stable following permafrost thaw, without a rapid pulse of decomposition during the young bog stage. For near-surface peat, we found significantly higher potential enzyme activities in the young bog than in the mature-associated with differences in peat quality derived from different Sphagnum species. A laboratory incubation of near-surface peat showed that differences in potential enzyme activity were primarily influenced by peat type rather than oxygen availability. This suggested that the young bog can have higher rates of near-surface decomposition despite being substantially wetter than the mature bog. Overall, our study shows that peat properties are the dominant constraint on potential enzyme activity and that peatland site development (successional pathways and permafrost history) through its influence on peat type and chemistry is likely to determine peat decomposition following permafrost thaw.


Subject(s)
Greenhouse Gases , Permafrost , Carbon/analysis , Soil , Wetlands
13.
Water Res ; 190: 116713, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33302039

ABSTRACT

Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate. Two experiments were performed to determine the direct effect of ARO on primary producers (submerged macrophytes, periphyton and phytoplankton) and on the grazing snail Lymnaea stagnalis, respectively. Three different ARO concentrations added as single doses or as multiple pulses at two different temperatures (22°C and 26°C) were applied. In a third experiment, primary producers and consumers were exposed together to allow trophic interactions. When functional groups were exposed alone, ARO had a direct positive effect on phytoplankton and a strong negative effect on L. stagnalis. When exposed together, primary producer responses were contrasting, as the negative effect of ARO on grazers led to an indirect positive effect on periphyton. Periphyton in turn exerted a strong control on phytoplankton, leading to an indirect negative effect of ARO on phytoplankton. Macrophytes showed little response to the stressors. Multiple pulse exposure increased the effect of ARO on L. stagnalis and periphyton when compared with the same quantity of ARO added as a single dose. The increase in temperature had only limited effects. Our results highlight the importance of indirect effects of stressors, here mediated by grazers and periphyton, and the frequency of the ARO input in aquatic ecosystems.


Subject(s)
Ecosystem , Global Warming , Agriculture , Animals , Lakes , Phytoplankton
14.
J Anim Ecol ; 90(9): 2015-2026, 2021 09.
Article in English | MEDLINE | ID: mdl-33232512

ABSTRACT

While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.


Subject(s)
Droughts , Ecosystem , Animals , Climate Change , Emigration and Immigration , Invertebrates
15.
PeerJ ; 8: e9821, 2020.
Article in English | MEDLINE | ID: mdl-32999758

ABSTRACT

Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world's soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more "terrestrial" community in response to drought, in line with observed changes in the functioning of the ecosystem.

16.
Eur J Protistol ; 73: 125674, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32200296

ABSTRACT

Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.


Subject(s)
Amoeba/classification , Amoeba/physiology , Ecosystem , Baltic States , Biodiversity , Demography , Forests , Hydrology , Sunlight
17.
Front Microbiol ; 10: 2042, 2019.
Article in English | MEDLINE | ID: mdl-31555245

ABSTRACT

Plant specialized metabolites play an important role in soil carbon (C) and nutrient fluxes. Through anti-microbial effects, they can modulate microbial assemblages and associated microbial-driven processes, such as nutrient cycling, so to positively or negatively cascade on plant fitness. As such, plant specialized metabolites can be used as a tool to supplant competitors. These compounds are little studied in bryophytes. This is especially notable in peatlands where Sphagnum mosses can dominate the vegetation and show strong interspecific competition. Sphagnum mosses form carpets where diverse microbial communities live and play a crucial role in Sphagnum fitness by regulating C and nutrient cycling. Here, by means of a microcosm experiment, we assessed to what extent moss metabolites of two Sphagnum species (S. fallax and S. divinum) modulate the competitive Sphagnum microbiome, with particular focus on microbial respiration. Using a reciprocal leachate experiment, we found that interactions between Sphagnum leachates and microbiome are species-specific. We show that both Sphagnum leachates differed in compound richness and compound relative abundance, especially sphagnum acid derivates, and that they include microbial-related metabolites. The addition of S. divinum leachate on the S. fallax microbiome immediately reduced microbial respiration (-95%). Prolonged exposition of S. fallax microbiome to S. divinum leachate destabilized the food web structure due to a modulation of microbial abundance. In particular, leachate addition decreased the biomass of testate amoebae and rotifers but increased that of ciliates. These changes did not influence microbial CO2 respiration, suggesting that the structural plasticity of the food web leads to its functional resistance through the replacement of species that are functionally redundant. In contrast, S. fallax leachate neither affected S. divinum microbial respiration, nor microbial biomass. We, however, found that S. fallax leachate addition stabilized the food web structure associated to S. divinum by changing trophic interactions among species. The differences in allelopathic effects between both Sphagnum leachates might impact their competitiveness and affect species distribution at local scale. Our study further paves the way to better understand the role of moss and microbial specialized metabolites in peatland C dynamics.

18.
Glob Chang Biol ; 25(11): 3859-3870, 2019 11.
Article in English | MEDLINE | ID: mdl-31502398

ABSTRACT

Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax ) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming-induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.


Subject(s)
Sphagnopsida , Climate Change , Ecosystem , Photosynthesis , Rain , Soil
20.
ISME J ; 13(8): 2140-2142, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31024154

ABSTRACT

Since the publication of the original article, the authors noticed some errors in reference citation had been introduced throughout the paper. The following text contains excerpts from the original article and how they should appear with correct referencing. The publisher apologises for any inconvenience this has caused readers.

SELECTION OF CITATIONS
SEARCH DETAIL
...