Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biophys Chem ; 175-176: 63-70, 2013.
Article in English | MEDLINE | ID: mdl-23523464

ABSTRACT

Hyaluronan (HA) is catalytically hydrolyzed by hyaluronidase (HAase). Depending on pH, HA is able to form a non-productive electrostatic complex with HAase in addition to the classical enzyme-substrate complex. Experiments have shown the strong inhibition of the HA hydrolysis catalyzed by HAase when performed at high HA over HAase concentration ratio and low ionic strength. The substrate-dependence thus shows a non-classic inhibition of HAase at high substrate concentrations due to the sequestration of HAase by HA in the electrostatic complex. The modeling of the HA/HAase system is characteristic of a reaction-complexation coupling and it is very difficult to study reaction or binding, separately. Here, we have established the equation controlling the global system and shown that the substrate-dependence of such a system is a direct combination of a pure Michaelis-Menten equation associated with the reaction and a hyperbolic curve associated with the binding. At low substrate concentrations, the hyperbola, representing the relative part of HAase not sequestered by HA, can be assimilated to a straight line. We have established the relationship between the slope of that straight line and the dissociation constant of the electrostatic HA-HAase complex. Fitting the theoretical equation to the experimental data allowed us to determine, for the first time, the Kd value of the non-productive HA-HAase complex at low ionic strength.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Hydrolysis , Kinetics , Osmolar Concentration , Protein Binding , Substrate Specificity
2.
Matrix Biol ; 29(4): 330-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20043995

ABSTRACT

Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at a low ratio of HAase to HA concentrations and at low ionic strength. This is because long HA chains can form non-active complexes with HAase. Bovine serum albumin (BSA) is able to compete with HAase to form electrostatic complexes with HA so freeing HAase which then recovers its catalytic activity. This BSA-dependence is characterised by two main domains separated by the optimal BSA concentration: below this concentration the HAase activity increases when the BSA concentration is increased, above this concentration the HAase activity decreases. This occurs provided that HA is negatively charged and BSA is positively charged, i.e. in a pH range from 3 to 5.25. The higher the pH value the higher the optimal BSA concentration. Other proteins can also modulate HAase activity. Lysozyme, which has a pI higher than that of BSA, is also able to compete with HAase to form electrostatic complexes with HA and liberate HAase. This occurs over a wider pH range that extends from 3 to 9. These results mean that HAase can form complexes with HA and recover its enzymatic activity at pH as high as 9, consistent with HAase having either a high pI value or positively charged patches on its surface at high pH. Finally, the pH-dependence of HAase activity, which results from the influence of pH on both the intrinsic HAase activity and the formation of complexes between HAase and HA, shows a maximum at pH 4 and a significant activity up to pH 9.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Proteins/metabolism , Animals , Catalysis , Cattle , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Hydrolysis , Muramidase/metabolism , Osmolar Concentration , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism
3.
Biophys Chem ; 145(2-3): 126-34, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19836126

ABSTRACT

Hyaluronan (HA) is the substrate of hyaluronidase (HAase). In addition, HA is able to form electrostatic complexes with many proteins, including HAase. Experiments have shown the strong inhibition of the HA hydrolysis catalyzed by HAase when performed at low HAase over HA concentration ratio and under low ionic strength conditions. Non-catalytic P proteins are able to compete with HAase to form electrostatic complexes with HA and thus to modulate HAase activity. We have modeled the HA-HAase-P system by considering the competition between the two complex equilibria HA-P and HA-HAase, the Michaelis-Menten type behavior of HAase, and the non-activity of the electrostatically complexed HAase. Simulations performed by introducing experimental data produce a theoretical behavior similar to the experimental one, including all the atypical phenomena observed: substrate-dependence, enzyme-dependence and protein-dependence of HAase. This shows that our assumptions are sufficient to explain the behavior of the system and allow us to estimate unknown parameters and suggest new developments.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Models, Biological , Proteins/metabolism , Animals , Binding, Competitive , Cattle , Computational Biology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/chemistry , Osmolar Concentration , Protein Binding , Proteins/pharmacology
4.
Matrix Biol ; 28(6): 365-72, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19394422

ABSTRACT

Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at low HAase over HA concentration ratio and under low ionic strength conditions. The reason is the ability of long HA chains to form electrostatic and non-catalytic complexes with HAase. For a given HA concentration, low HAase concentrations lead to very low hydrolysis rates because all the HAase molecules are sequestered by HA, whilst high HAase concentrations lead to high hydrolysis rates because the excess of HAase molecules remains free and active. At pH 4, non-catalytic proteins like bovine serum albumin (BSA) are able to compete with HAase to form electrostatic complexes with HA, liberating HAase which recovers its catalytic activity. The general scheme for the BSA-dependency is thus characterised by four domains delimited by three noticeable points corresponding to constant BSA over HA concentration ratios. The existence of HA-protein complexes explains the atypical kinetic behaviour of the HA / HAase system. We also show that HAase recovers the Michaelis-Menten type behaviour when the HA molecule complexed with BSA in a constant complexion state, i.e. with the same BSA over HA ratio, is considered for substrate. When the ternary HA / HAase / BSA system is concerned, the stoichiometries of the HA-HAase and HA-BSA complexes are close to 10 protein molecules per HA molecule for a native HA of 1 MDa molar mass. Finally, we show that the behaviour of the system is similar at pH 5.25, although the efficiency of BSA is less.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Serum Albumin, Bovine/metabolism , Animals , Cattle , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Osmolar Concentration , Serum Albumin, Bovine/chemistry , Static Electricity
5.
Biopolymers ; 89(12): 1088-103, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18677769

ABSTRACT

Hyaluronan (HA) hydrolysis catalyzed by hyaluronidase (HAase) is inhibited at low HAase over HA ratio and low ionic strength, because HA forms electrostatic complexes with HAase, which is unable to catalyze hydrolysis. Bovine serum albumin (BSA) was used as a model to study the HA-protein electrostatic complexes at pH 4. At low ionic strength, there is formation of (i) neutral insoluble complexes at the phase separation and (ii) small positively-charged or large negatively-charged soluble complexes whether BSA or HA is in excess. According to the ionic strength, different types of complex are formed. Assays for HA and BSA led to the determination of the stoichiometry of these complexes. HAase was also shown to form the various types of complex with HA at low ionic strength. Finally, we showed that at 0 and 150 mmol L(-1) NaCl, BSA competes with HAase in forming complexes with HA and thus induces HAase release resulting in a large increase in the hydrolysis rate. These results, in addition to data in the literature, show that HA-protein complexes, which can exist under numerous and varied conditions of pH, ionic strength and protein over HA ratio, might control the in vivo HAase activity.


Subject(s)
Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/metabolism , Proteins/chemistry , Serum Albumin, Bovine/chemistry , Amino Acid Sequence , Humans , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Molecular Sequence Data , Static Electricity , Umbilical Cord/chemistry , Uronic Acids/analysis
6.
Matrix Biol ; 27(5): 475-86, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18337076

ABSTRACT

Hyaluronan (HA) has various biological functions that are strongly dependent on its chain length. In some cases, as in inflammation and angiogenesis, long and short chain-size HA effects are antagonistic. HA hydrolysis catalyzed by hyaluronidase (HAase) is believed to be involved in the control of the balance between longer and shorter HA chains. Our studies of native HA hydrolysis catalyzed by bovine testicular HAase have suggested that the kinetic parameters depend on the chain size. We thus used HA fragments with a molar mass ranging from 8x10(2) g mol(-1) to 2.5x10(5) g mol(-1) and native HA to study the influence of the chain length of HA on the kinetics of its HAase-catalyzed hydrolysis. The initial hydrolysis rate strongly varied with HA chain length. According to the Km and Vm/Km values, the ability of HA chains to form an efficient enzyme-substrate complex is maximum for HA molar masses ranging from 3x10(3) to 2x10(4) g mol(-1). Shorter HA chains seem to be too short to form a stable complex and longer HA chains encounter difficulties in forming a complex, probably because of steric hindrance. The hydrolysis Vm values strongly suggest that as the chain length decreases the HAase increasingly catalyses transglycosylation rather than hydrolysis. Finally, two HA chain populations, corresponding to HA chain molar masses lower and higher than approximately 2x10(4) g mol(-1), are identified and related to the bi-exponential character of the model we have previously proposed to fit the experimental points of the kinetic curves.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Testis/enzymology , Algorithms , Animals , Catalysis , Cattle , Humans , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Hydrolysis , Kinetics , Male , Models, Chemical , Molecular Weight
7.
Wound Repair Regen ; 16(2): 274-87, 2008.
Article in English | MEDLINE | ID: mdl-18282267

ABSTRACT

Hyaluronan (HA) is involved in wound healing and its biological properties depend on its molecular size. The effects of native HA and HA-12 and HA-880 saccharide fragments on human fibroblast proliferation and expression of matrix-related genes were studied. The three HA forms promoted cell adhesion and proliferation. Matrix metalloproteinase-1 and -3 mRNA were increased by all HA forms, whereas only HA-12 stimulated the expression of the tissue inhibitor of metalloproteinase 1. HA-12 enhanced type I collagen and transforming growth factor-beta (TGF-beta) 1 expression. Interestingly, HA-12 and native HA stimulated type III collagen and TGF-beta3. HA and its fragments activated Akt and extracellular-regulated kinases 1/2 and p38. Inhibition of these signaling pathways suggested their implication in most of the effects. Only native HA activated nuclear factor-kappaB and activating protein 1. Use of CD44 siRNA suggests that this HA receptor is partly implicated in the effects, although it does not rule out the involvement of other receptors. Depending on its size, HA may exert differential regulation on the wound-healing process. Furthermore, the HA up-regulation of type III collagen and TGF-beta3 expression suggests that it may promote a fetal-like cell environment that favors scarless healing.


Subject(s)
Dermis/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Collagen Type I/metabolism , Humans , Hyaluronan Receptors/metabolism , Hyaluronic Acid/chemistry , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Weight , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta3/metabolism , Wound Healing/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Matrix Biol ; 27(3): 242-53, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18083358

ABSTRACT

Hyaluronidase (HAase) plays an important role in the control of the size and concentration of hyaluronan (HA) chains, whose biological properties strongly depend on their length. Our previous studies of HA hydrolysis catalyzed by testicular HAase demonstrated that, whilst the substrate-dependence curve has a Michaelis-Menten shape with a 0.15 mol L(-1) ionic strength, at low ionic strength (5 mmol L(-1)), a strong decrease in the initial hydrolysis rate is observed at high substrate concentrations; the HA concentration for which the initial rate is maximum increases when the HAase concentration is increased. After examination of various hypotheses, we suggested that this could be explained by the ability of HA to form non-specific complexes with HAase, which thus becomes unable to catalyze HA hydrolysis. In order to verify this hypothesis, we first showed from turbidimetric measurements that HAase, like albumin, is able to form electrostatic complexes with HA. Albumin then was used as a non-catalytic protein able to compete with HAase for the formation of non-specific complexes with HA, allowing HAase to be free and catalytically active. The kinetic results showed that the HA-HAase non-specific complex inhibits HAase catalytic activity towards HA. Depending on the albumin concentration with respect to the HAase and HA concentrations, albumin can either remove this inhibition or induce another type of inhibition. Finally, the extent of such non-specific interactions between polyelectrolytes and proteins in HAase inhibition or activation, in particular under in vivo conditions, is discussed.


Subject(s)
Gene Expression Regulation , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Animals , Catalysis , Cattle , Electrolytes , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Serum Albumin/chemistry , Spectrophotometry/methods , Time Factors , Umbilical Veins/pathology
9.
Anal Biochem ; 348(2): 232-42, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16316620

ABSTRACT

Hyaluronan (HA) has different biological functions according to its molar mass; short HA fragments are involved in inflammation processes and angiogenesis, whereas native HA is not. Physicochemically, studies of native HA hydrolysis catalyzed by bovine testicular hyaluronidase (HAase) have suggested that kinetic parameters depend on HA chain length. To study the influence of HA chain length in more detail, and to try to correlate the physicochemical and biological properties of HA, HA hydrolysis catalyzed by HAase was used in a new procedure to obtain HA fragments of different molar masses. HA fragments (10-mg scale) with a molar mass from 800 to 300,000 g mol(-1) were prepared, purified using low-pressure size exclusion chromatography (SEC), lyophilized, and characterized in molar mass by either mass spectrometry or HPLC-SEC-multiangle laser light scattering. The polydispersity index of the purified fractions was less than 1.25. The complete set of HA standards obtained was used to calibrate our routine HPLC-SEC device using only a refractive index (RI) detector. We showed that the N-acetyl-d-glucosamine reducing end assay and the calibrated HPLC-SEC-RI gave equivalent kinetic data. In addition, the HPLC-SEC-RI furnished the mass distribution of the polysaccharide during its hydrolysis.


Subject(s)
Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Animals , Catalysis , Cattle , Chromatography, High Pressure Liquid , Hydrolysis , Molecular Weight
10.
Matrix Biol ; 25(3): 166-74, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16380245

ABSTRACT

Hyaluronidase and high levels of hyaluronan are found together in tumours. It is highly likely that hyaluronidase activity controls the balance between high molecular mass hyaluronan and oligosaccharides, and thus plays an important role in cancer development. The hyaluronan hydrolysis catalysed by bovine testicular hyaluronidase was studied as a model. The kinetics was investigated at pH 5 and 37 degrees C using the colorimetric N-acetyl-d-glucosamine reducing end assay method. While the substrate dependence obtained in the presence of 0.15 mol L(-1) ionic strength exhibited a Michaelis-Menten behaviour, an atypical behaviour was observed under low ionic strength: for increasing hyaluronan concentrations, the initial reaction rate increased, reached a maximum and then decreased to a very low level, close to zero at high substrate concentrations. One of the various hypotheses examined to explain this atypical behaviour is the formation of non-specific complexes between hyaluronan and hyaluronidase based on electrostatic interactions. This hypothesis is the only one that can explain all the experimental results including the variation of the reaction medium turbidity as a function of time and the influence on the initial reaction rate of the hyaluronan concentration over hyaluronidase concentration. However, phenomena such as the high viscosity of highly concentrated hyaluronan solutions or the steric exclusion of hyaluronidase from hyaluronan solutions may contribute to the atypical behaviour. Finally, the biological implications of the non-linear and non-monotonous shape of the hyaluronan-hyaluronidase substrate dependence in the regulation of the hyaluronan chain molecular mass are discussed, in particular in the case of cancer development.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Animals , Cattle , Male , Osmolar Concentration , Testis/enzymology
11.
Biomarkers ; 8(3-4): 333-8, 2003.
Article in English | MEDLINE | ID: mdl-12944181

ABSTRACT

Cancer cell lines often secrete hyaluronidase, suggesting that this enzyme could be used as a marker of growing tumours. We have measured hyaluronidase in the sera of non-grafted mice and mice grafted with human tumour-derived hyaluronidase-secreting H460M and SA87 cells or non-secreting CB 193 cells. Mouse serum hyaluronidase was measured at pH 3.8 using the enzyme-linked sorbent assay (ELSA) technique by reference to human serum whose activity at pH 3.8 was determined by the Reissig technique. The serum hyaluronidase in non-grafted mice ranged from 310-520 mU l(-1) (mean+/-SD 432+/-70 mU l(-1), median 440 mU l(-1)). Hyaluronidase increased in the sera of tumour-bearing mice grafted with H460M cells or with SA87 cells, but not in the sera of mice grafted with CB 193 cells. Serum hyaluronidase activity in H460M or SA87 tumour-bearing mice correlated with the tumour mass, increased with time, and decreased after tumour removal. Zymography detected two different hyaluronidase forms in the sera of non-grafted mice: type 1 had only one hyaluronidase band and type 2 had five different bands. In both types, enzyme augmentation in tumour-bearing mice correlated with the presence of an additional enzyme band that was not seen in normal sera and that migrated as the cancer cell enzyme did; there was no augmentation of the normal isoform(s). These results show that serum hyaluronidase can be used to follow the development of tumours in mice grafted with hyaluronidase-secreting cells.


Subject(s)
Hyaluronoglucosaminidase/blood , Neoplasm Proteins/blood , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/enzymology , Animals , Biomarkers, Tumor/blood , Cell Line, Tumor , Humans , Hyaluronoglucosaminidase/metabolism , Mice , Mice, Nude , Neoplasms, Experimental/pathology , Sensitivity and Specificity , Transplantation, Heterologous
12.
C R Biol ; 326(2): 149-59, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12754934

ABSTRACT

Embedding a simple Michaelis-Menten enzyme in a gel slice may allow the catalysis of not only scalar processes but also vectorial ones, including uphill transport of a substrate between two compartments, and may make it seem as if two enzymes or transporters are present or as if an allosterically controlled enzyme/transporter is operating. The values of kinetic parameters of an enzyme in a partially hydrophobic environment are usually different from those actually measured in a homogeneous aqueous solution. This implies that fitting kinetic data (expressed in reciprocal co-ordinates) from in vivo studies of enzymes or transporters to two straight lines or a sigmoidal curve does not prove the existence of two different membrane mechanisms or allosteric control. In the artificial transport systems described here, a functional asymmetry was sufficient to induce uphill transport, therefore, although the active transport systems characterised so far correspond to proteins asymmetrically anchored in a membrane, the past or present existence of structurally symmetrical systems of transport in vivo cannot be excluded. The fact that oscillations can be induced in studies of the maintenance of the electrical potential of frog skin by addition of lithium allowed evaluation of several parameters fundamental to the functioning of the system in vivo (e.g., relative volumes of internal compartments, characteristic times of ionic exchanges between compartments). Hence, under conditions that approach real biological complexity, increasing the complexity of the behaviour of the system may provide information that cannot be obtained by a conventional, reductionist approach.


Subject(s)
Carrier Proteins/metabolism , Enzymes, Immobilized/metabolism , Allosteric Regulation , Animals , Anura , Biological Transport , Catalysis , Epithelium/drug effects , Epithelium/physiology , Gels , Hydrophobic and Hydrophilic Interactions , Kinetics , Lithium/pharmacology , Magnesium/pharmacology , Membrane Potentials/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Solubility
13.
Biotechnol Bioeng ; 81(2): 167-77, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12451553

ABSTRACT

The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.


Subject(s)
Enzymes/metabolism , Kinetics , Thermodynamics , Water/chemistry , Bioreactors , Catalysis , Esterification , Hydrogen-Ion Concentration , Peptide Biosynthesis
14.
Anal Biochem ; 302(2): 285-90, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11878809

ABSTRACT

Specific hyaladherin-based assays have been set up to measure the concentration of hyaluronan in biological fluids. Hyaluronectin (HN; a hyaladherin extracted from ovine brain) binds to hyaluronan (HA) that must be 10 units (HA10) or more long. It was therefore of interest to determine whether HN would continue to bind to HA10 in full-length HA since conformational changes might mask potential binding sites. We used the enzyme-linked sorbent assay (ELSA) to assay HA and hyaluronan-derived oligosaccharides, with different standard HAs, and the results were compared to results obtained with the carbazole technique. Oligosaccharide length was calculated from the ratio glucuronic acid/reducing N-acetylglucosamine in fractions of hyaluronidase-digested macromolecular hyaluronan prepared by chromatography; the size of the HA12 oligosaccharide was confirmed by matrix-assisted laser desorption ionization mass spectrometry. During the digestion of macromolecular HA with hyaluronidase, the binding of HN to HA first increased and then decreased as shown using the ELSA. The concentration of HA fragments of HA60 and below was overestimated when intact macromolecular HA was used as the reference for the ELSA, while the concentration of HA100 and above was underestimated when HA10 was used as the reference. The binding of HN to HA20, HA40, and HA60 saccharides was consistent with binding to multiples of HA10 sites. In conclusion, the level of HN binding is determined by the conformation of HA, which may mask binding sites. Hence, calibration HA used in the ELSA must be adapted to the size of HA to assay.


Subject(s)
Carrier Proteins/metabolism , Glycoproteins/metabolism , Hyaluronic Acid/analysis , Hyaluronoglucosaminidase/metabolism , Oligosaccharides/analysis , Binding Sites/physiology , Body Fluids/chemistry , Calibration/standards , Carbohydrate Conformation , Enzyme-Linked Immunosorbent Assay/methods , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Streptococcus/chemistry , Tumor Cells, Cultured , Umbilical Cord/chemistry
15.
Acta Biotheor ; 50(4): 357-73, 2002.
Article in English | MEDLINE | ID: mdl-12675536

ABSTRACT

New concepts may prove necessary to profit from the avalanche of sequence data on the genome, transcriptome, proteome and interactome and to relate this information to cell physiology. Here, we focus on the concept of large activity-based structures, or hyperstructures, in which a variety of types of molecules are brought together to perform a function. We review the evidence for the existence of hyperstructures responsible for the initiation of DNA replication, the sequestration of newly replicated origins of replication, cell division and for metabolism. The processes responsible for hyperstructure formation include changes in enzyme affinities due to metabolite-induction, lipid-protein affinities, elevated local concentrations of proteins and their binding sites on DNA and RNA, and transertion. Experimental techniques exist that can be used to study hyperstructures and we review some of the ones less familiar to biologists. Finally, we speculate on how a variety of in silico approaches involving cellular automata and multi-agent systems could be combined to develop new concepts in the form of an Integrated cell (I-cell) which would undergo selection for growth and survival in a world of artificial microbiology.


Subject(s)
Bacteria/cytology , Bacteria/genetics , Genes, Bacterial/physiology , Algorithms , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle/physiology , Computer Simulation , DNA Replication , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Macromolecular Substances , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...