Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Biol Psychol ; 180: 108583, 2023 05.
Article in English | MEDLINE | ID: mdl-37156325

ABSTRACT

When listeners hear a message produced by their interlocutor, they can predict upcoming words thanks to the sentential context and their attention can be focused on the speaker's communication intention. In two electroencephalographical (EEG) studies, we investigated the oscillatory correlates of prediction in spoken-language comprehension and how they are modulated by the listener's attention. Sentential contexts which were strongly predictive of a particular word were ended by a possessive adjective either matching the gender of the predicted word or not. Alpha, beta and gamma oscillations were studied as they were considered to play a crucial role in the predictive process. While evidence of word prediction was related to alpha fluctuations when listeners focused their attention on sentence meaning, changes in high-gamma oscillations were triggered by word prediction when listeners focused their attention on the speaker's communication intention. Independently of the endogenous attention to a level of linguistic information, the oscillatory correlates of word predictions in language comprehension were sensitive to the prosodic emphasis produced by the speaker at a late stage. These findings thus bear major implications for understanding the neural mechanisms that support predictive processing in spoken-language comprehension.


Subject(s)
Intention , Speech Perception , Humans , Comprehension , Communication , Linguistics
3.
Psychophysiology ; 60(5): e14226, 2023 05.
Article in English | MEDLINE | ID: mdl-36567446

ABSTRACT

Advances in timing research advocate for the existence of two timing mechanisms (automatic vs. controlled) that are related to the level of cognitive control intervening for motor behavior regulation. In the present study, we used the functional near-infrared spectroscopy (fNIRS) cutting-edge technique to examine the hypothesis that prefrontal inhibitory control is needed to perform slow motor activities. Participants were asked to perform a sensorimotor-synchronization task at various paces (i.e., slow, close-to-spontaneous, fast). We contrasted upper-limb circle drawing to a more naturalistic behavior that required whole-body movements (i.e., steady-state walking). Results indicated that whole-body movements led to greater brain oxygenation over the motor regions when compared with upper-limb activities. The effect of motor pace was found in the walking task only, with more bilateral orbitofrontal and left dorsolateral activation at slow versus fast pace. Exploratory analyses revealed a positive correlation between the activation of the orbitofrontal and motor areas for the close-to-spontaneous pace in both tasks. Overall, results support the key role of prefrontal cognitive control in the production of slow whole-body movements. In addition, our findings confirm that upper-limb (laboratory-based) tasks might not be representative of those engaged during everyday-life motor behaviors. The fNIRS technique may be a valuable tool to decipher the neurocognitive mechanisms underlying naturalistic, adaptive motor behaviors.


Subject(s)
Brain , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Brain/physiology , Upper Extremity , Walking/physiology , Hemodynamics
4.
Brain Lang ; 232: 105150, 2022 09.
Article in English | MEDLINE | ID: mdl-35779460

ABSTRACT

We investigated the mechanisms underlying the online-processing of phonological constraints using oddball fast-periodic visual stimulation coupled with EEG. We focused on the Sonority Sequencing Principle and examined whether steady-state visual evoked potentials (SSVEPs) are sensitive to the sonority constraint on syllable onsets. Native French speakers were presented with streams of CCVC non-words (C: consonant, V: vowel) at a fixed 6-Hz base rate. We manipulated the phonological well-formedness and lexical attestedness of CC onsets in two conditions. SSVPs were observed at the base rate associated to visual stimuli. As expected, they did not differ between conditions. Oddball SSVEPs were observed at 1.2 Hz (and its harmonics) and differed in the two conditions. These results showed that SSVEPs are sensitive to sublexical features. They also suggest that the processing of phonological constraints rely on mechanisms which could be dissociated from those underlying the processing of statistical properties of the lexicon.


Subject(s)
Evoked Potentials, Visual , Phonetics , Brain/physiology , Electroencephalography , Humans , Photic Stimulation
5.
Brain Topogr ; 34(2): 221-233, 2021 03.
Article in English | MEDLINE | ID: mdl-33400097

ABSTRACT

Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery and in epileptic patients. DES may be coupled with the measurement of Evoked Potentials (EP) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. However, its electrophysiological effects remain by far unknown. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EP on functional sites after cortical stimulations and were the firsts to record three different types of EP on the same patients. Using low-intensity (1-3 mA) to evoke electrogenesis we observed that: (i) "true" remote EPs are attenuated in amplitude and delayed in time due to the divergence of white matter pathways; (ii) "false" remote EPs are attenuated but not delayed: as they originate from the same electrical source; (iii) Singular but reproducible positive components in the EP can be generated when the DES is applied in the temporal lobe or the premotor cortex; and (iv) rare EP can be triggered when the DES is applied subcortically: these can be either negative, or surprisingly, positive. We proposed different activation and electrophysiological propagation mechanisms following DES, based on the nature of activated neural elements and discussed important methodological pitfalls when measuring EP in the brain. Altogether, these results pave the way to map the connectivity in real-time between the DES and the recording sites; to characterize the local electrophysiological states and to link electrophysiology and function. In the future, and in practice, this technique could be used to perform electrophysiological mapping in order to link (non)-functional to electrophysiological responses with DES and could be used to guide the surgical act itself.


Subject(s)
Brain Neoplasms , Brain/diagnostic imaging , Brain Mapping , Brain Neoplasms/surgery , Electric Stimulation , Evoked Potentials , Humans , Wakefulness
6.
Neuroimage ; 230: 117597, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33418074

ABSTRACT

People are able to modify the spontaneous pace of their actions to interact with their environment and others. This ability is underpinned by high-level cognitive functions but little is known in regard to the brain areas that underlie such temporal control. A salient practical issue is that current neuroimaging techniques (e.g., EEG, fMRI) are extremely sensitive to movement, which renders challenging any investigation of brain activity in the realm of whole-body motor paradigms. Within the last decade, the noninvasive imaging method of functional near-infrared spectroscopy (fNIRS) has become the reference tool for experimental motor paradigms due to its tolerance to motion artefacts. In the present study, we used a continuous-wave fNIRS system to record the prefrontal and motor hemodynamic responses of 16 participants, while they performed a spatial-tapping task varying in motor complexity and externally-paced tempi (i.e., 300 ms, 500 ms, 1200 ms). To discriminate between physiological noise and cerebral meaningful signals, the physiological data (i.e., heart and respiratory rates) were recorded so that frequency bands of such signals could be regressed from the fNIRS data. Particular attention was taken to control the precise position of the optodes in reference to the cranio-cerebral correlates of the NIR channels throughout the experimental session. Results indicated that fast pacing relied on greater activity of the motor areas whereas moving at close-to-spontaneous pace placed a heavier load on posterior prefrontal processes. These results provide new insight concerning the role of frontal cognitive control in modulating the pacing of voluntary motor behaviors.


Subject(s)
Motor Cortex/metabolism , Prefrontal Cortex/metabolism , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Humans , Male , Photic Stimulation/methods , Random Allocation , Spectroscopy, Near-Infrared/methods
7.
Brain Topogr ; 33(1): 143-148, 2020 01.
Article in English | MEDLINE | ID: mdl-31559555

ABSTRACT

Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery but its electrophysiological effects remain by far unknown. DES may be coupled with the measurement of evoked potentials (EPs) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EPs on functional sites after cortical stimulations, using combinations of stimulation parameters. EPs were similar in shape but delayed in time and attenuated in amplitude when elicited from a different gyrus or remotely from the recording site. We were able to trigger remote EPs using low stimulation intensities. We propose different activation and electrophysiological propagation mechanisms following DES based on activated neural elements.


Subject(s)
Brain Neoplasms/surgery , Brain/physiology , Electric Stimulation/methods , Evoked Potentials , Brain Mapping , Electrocorticography , Female , Humans , Male , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...