Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
J Med Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961727

ABSTRACT

Inherited retinal diseases, which include retinitis pigmentosa, are a family of genetic disorders characterized by gradual rod-cone degeneration and vision loss, without effective pharmacological treatments. Experimental approaches aim to delay disease progression, supporting cones' survival, crucial for human vision. Histone deacetylases (HDACs) mediate the activation of epigenetic and nonepigenetic pathways that modulate cone degeneration in RP mouse models. We developed new HDAC inhibitors (5a-p), typified by a tetrahydro-γ-carboline scaffold, characterized by high HDAC6 inhibition potency with balanced physicochemical properties for in vivo studies. Compound 5d (repistat, IC50 HDAC6 = 6.32 nM) increased the levels of acetylated α-tubulin compared to histone H3 in ARPE-19 and 661W cells. 5d promoted vision rescue in the atp6v0e1-/- zebrafish model of photoreceptor dysfunction. A single intravitreal injection of 5d in the rd10 mouse model of RP supported morphological and functional preservation of cone cells and maintenance of the retinal pigment epithelium array.

2.
ACS Pharmacol Transl Sci ; 7(7): 2125-2142, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022363

ABSTRACT

Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.

3.
J Pineal Res ; 76(2): e12941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38606814

ABSTRACT

The labeled ligand commonly employed in competition binding studies for melatonin receptor ligands, 2-[125I]iodomelatonin, showed slow dissociation with different half-lives at the two receptor subtypes. This may affect the operational measures of affinity constants, which at short incubation times could not be obtained in equilibrium conditions, and structure-activity relationships, as the Ki values of tested ligands could depend on either interaction at the binding site or the dissociation path. To address these issues, the kinetic and saturation binding parameters of 2-[125I]iodomelatonin as well as the competition constants for a series of representative ligands were measured at a short (2 h) and a long (20 h) incubation time. Concurrently, we simulated by molecular modeling the dissociation path of 2-iodomelatonin from MT1 and MT2 receptors and investigated the role of interactions at the binding site on the stereoselectivity observed for the enantiomers of the subtype-selective ligand UCM1014. We found that equilibrium conditions for 2-[125I]iodomelatonin binding can be reached only with long incubation times, particularly for the MT2 receptor subtype, for which a time of 20 h approximates this condition. On the other hand, measured Ki values for a set of ligands including agonists, antagonists, nonselective, and subtype-selective compounds were not significantly affected by the length of incubation, suggesting that structure-activity relationships based on data collected at shorter time reflect different interactions at the binding site. Molecular modeling simulations evidenced that the slower dissociation of 2-iodomelatonin from the MT2 receptor can be related to the restricted mobility of a gatekeeper tyrosine along a lipophilic path from the binding site to the membrane bilayer. The enantiomers of the potent, MT2-selective agonist UCM1014 were separately synthesized and tested. Molecular dynamics simulations of the receptor-ligand complexes provided an explanation for their stereoselectivity as due to the preference shown by the eutomer at the binding site for the most abundant axial conformation adopted by the ligand in solution. These results suggest that, despite the slow-binding kinetics occurring for the labeled ligand, affinity measures at shorter incubation times give robust results consistent with known structure-activity relationships and with interactions taken at the receptor binding site.


Subject(s)
Melatonin , Quinolines , Ligands , Receptors, Melatonin , Melatonin/metabolism , Amides , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT1/metabolism
4.
Biomed Pharmacother ; 174: 116537, 2024 May.
Article in English | MEDLINE | ID: mdl-38579402

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Subject(s)
Apoptosis , B-Lymphocytes , Histone Deacetylase Inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell , STAT4 Transcription Factor , Src Homology 2 Domain-Containing, Transforming Protein 1 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , STAT4 Transcription Factor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Benzamides/pharmacology , Male , Aged , Female , Middle Aged
5.
ACS Med Chem Lett ; 14(12): 1640-1646, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116442

ABSTRACT

A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 µM, without activity (30 µM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.

6.
Pharmaceutics ; 15(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896201

ABSTRACT

The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.

7.
Biomolecules ; 13(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37759787

ABSTRACT

Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.

8.
Arch Pharm (Weinheim) ; 356(12): e2300410, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37750286

ABSTRACT

Aiming to simultaneously modulate the endocannabinoid system (ECS) functions and the epigenetic machinery, we selected the fatty acid amide hydrolase (FAAH) and histone deacetylase (HDAC) enzymes as desired targets to develop potential neuroprotective multitarget-directed ligands (MTDLs), expecting to achieve an additive or synergistic therapeutic effect in oxidative stress-related conditions. We herein report the design, synthesis, and biological evaluation of the first-in-class FAAH-HDAC multitarget inhibitors. A pharmacophore merging strategy was applied, yielding 1-phenylpyrrole-based compounds 4a-j. The best-performing compounds (4c, 4f, and 4h) were tested for their neuroprotective properties in oxidative stress models, employing 1321N1 human astrocytoma cells and SHSY5 human neuronal cells. In our preliminary studies, compound 4h stood out, showing a balanced nanomolar inhibitory activity against the selected targets and outperforming the standard antioxidant N-acetylcysteine in vitro. Together with 4f, 4h was also able to protect 1321N1 cells from tert-butyl hydroperoxide or glutamate insult. Our study may provide the basis for the development of novel MTDLs targeting the ECS and epigenetic enzymes.


Subject(s)
Histone Deacetylase Inhibitors , Neuroprotective Agents , Humans , Histone Deacetylase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Structure-Activity Relationship , Amidohydrolases
9.
Biomolecules ; 13(6)2023 06 08.
Article in English | MEDLINE | ID: mdl-37371547

ABSTRACT

Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neuroprotective Agents , Humans , Caffeine/pharmacology , Caffeine/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Coffee/metabolism , Cognitive Dysfunction/drug therapy , Receptors, Purinergic P1 , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
10.
Psychopharmacology (Berl) ; 240(7): 1435-1452, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37233813

ABSTRACT

RATIONALE: 1-[(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl) methanone (MAM-2201) is a potent synthetic cannabinoid receptor agonist illegally marketed in "spice" products and as "synthacaine" for its psychoactive effects. It is a naphthoyl-indole derivative which differs from its analogue 1-[(5-Fluoropentyl)-1H-indol-3-yl](1-naphthylenyl) methanone (AM-2201) by the presence of a methyl substituent on carbon 4 (C-4) of the naphthoyl moiety. Multiple cases of intoxication and impaired driving have been linked to AM-2201 and MAM-2201 consumption. OBJECTIVES: This study aims to investigate the in vitro (murine and human cannabinoid receptors) and in vivo (CD-1 male mice) pharmacodynamic activity of MAM-2201 and compare its effects with those induced by its desmethylated analogue, AM-2201. RESULTS: In vitro competition binding studies confirmed that MAM-2201 and AM-2201 possess nanomolar affinity for both CD-1 murine and human CB1 and CB2 receptors, with preference for the CB1 receptor. In agreement with the in vitro binding data, in vivo studies showed that MAM-2201 induces visual, acoustic, and tactile impairments that were fully prevented by pretreatment with CB1 receptor antagonist/partial agonist AM-251, indicating a CB1 receptor mediated mechanism of action. Administration of MAM-2201 also altered locomotor activity and PPI responses of mice, pointing out its detrimental effect on motor and sensory gating functions and confirming its potential use liability. MAM-2201 and AM-2201 also caused deficits in short- and long-term working memory. CONCLUSION: These findings point to the potential public health burden that these synthetic cannabinoids may pose, with particular emphasis on impaired driving and workplace performance.


Subject(s)
Cannabinoids , Prepulse Inhibition , Male , Mice , Humans , Animals , Cannabinoids/pharmacology , Indoles/pharmacology , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2
11.
ChemMedChem ; 18(14): e202300109, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37114338

ABSTRACT

Traditionally, molecular recognition between the orthosteric site of adenosine receptors and their endogenous ligand occurs with a 1 : 1 stoichiometry. Inspired by previous mechanistic insights derived from supervised molecular dynamics (SuMD) simulations, which suggested an alternative 2 : 1 binding stoichiometry, we synthesized BRA1, a bis-ribosyl adenosine derivative, tested its ability to bind to and activate members of the adenosine receptor family, and rationalized its activity through molecular modeling.


Subject(s)
Adenosine , Molecular Dynamics Simulation , Adenosine/chemistry , Receptors, Purinergic P1 , Ligands
12.
Br J Pharmacol ; 180(10): 1316-1338, 2023 05.
Article in English | MEDLINE | ID: mdl-36526591

ABSTRACT

BACKGROUND AND PURPOSE: Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH: A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS: UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS: UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.


Subject(s)
Endocannabinoids , Neuroinflammatory Diseases , Rats , Animals , Endocannabinoids/metabolism , Receptors, Melatonin , Neuroprotection , Tandem Mass Spectrometry , Amidohydrolases , Inflammation/drug therapy , Polyunsaturated Alkamides/metabolism
13.
Eur J Med Chem ; 246: 114952, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36462439

ABSTRACT

The neuroprotective performance against neuroinflammation of the endocannabinoid system (ECS) can be remarkably improved by indirect stimulation mediated by the pharmacological inhibition of the key ECS catabolic enzyme fatty acid amide hydrolase (FAAH). Based on our previous works and aiming to discover new selective FAAH inhibitors , we herein reported a new series of carbamate-based FAAH inhibitors (4a-t) which showed improved drug disposition properties compared to the previously reported analogues 2a-b. The introduction of ionizable functions allowed us to obtain new FAAH inhibitors of nanomolar potency characterized by good water solubility and chemical stability at physiological pH. Interesting structure-activity relationships (SARs), deeply analyzed by molecular docking and molecular dynamic (MD) simulations, were obtained. All the newly developed inhibitors showed an excellent selectivity profile evaluated against monoacylglycerol lipase and cannabinoid receptors. The reversible mechanism of action was determined by a rapid dilution assay. Absence of toxicity was confirmed in mouse fibroblasts NIH3T3 (for compounds 4e, 4g, 4n-o, and 4s) and in human astrocytes cell line 1321N1 (for compounds 4e, 4n, and 4s). The absence of undesired cardiac effects was also confirmed for compound 4n. Selected analogues (compounds 4e, 4g, 4n, and 4s) were able to reduce oxidative stress in 1321N1 astrocytes and exhibited notable neuroprotective effects when tested in an ex vivo model of neuroinflammation.


Subject(s)
Enzyme Inhibitors , Neuroinflammatory Diseases , Mice , Animals , Humans , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , NIH 3T3 Cells , Amidohydrolases/metabolism , Endocannabinoids/metabolism
14.
ChemMedChem ; 17(24): e202200456, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36194001

ABSTRACT

The glycogen synthase kinase 3ß (GSK-3ß) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3ß potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step. Ethanol was used as the reaction solvent, simultaneously allowing the pure reaction products' recovery (by precipitation). Out of this set of squaramides, 6 j stood out, from computational and enzymatic converging data, as an ATP non-competitive inhibitor of GSK-3ß of micromolar potency. When engaged in cellular studies using retinal pigment epithelial cells (ARPE-19) transfected with a luciferase reporter gene under the control of T-cell factor/lymphoid enhancer factor (TCF/LEF) binding sites, 6 j was able to dose-dependently induce ß-catenin nuclear accumulation, as shown by the increased luciferase activity at a concentration of 2.5 µM.


Subject(s)
Epithelial Cells , Glycogen Synthase Kinase 3 beta , Quinine , Retinal Degeneration , TCF Transcription Factors , Humans , beta Catenin/metabolism , Epithelial Cells/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Luciferases/metabolism , Signal Transduction , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Quinine/analogs & derivatives , Quinine/chemical synthesis , Retinal Pigment Epithelium
15.
Front Pharmacol ; 13: 1030895, 2022.
Article in English | MEDLINE | ID: mdl-36278183

ABSTRACT

Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.

16.
Eur J Med Chem ; 243: 114762, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36150258

ABSTRACT

In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.


Subject(s)
Melatonin , Receptor, Melatonin, MT1 , Receptor, Melatonin, MT2 , Ligands , Melatonin/analogs & derivatives , Melatonin/chemistry , Melatonin/metabolism , Molecular Dynamics Simulation , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/chemistry , Receptor, Melatonin, MT2/metabolism
17.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887377

ABSTRACT

3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.


Subject(s)
Cannabinoids , Naphthalenes , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/chemistry , Cannabinoids/pharmacology , Humans , Indoles/chemistry , Male , Mice , Naphthalenes/chemistry , Receptor, Cannabinoid, CB1
18.
Molecules ; 27(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566035

ABSTRACT

The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer's disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-ß extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood-brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson's disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Chemistry, Pharmaceutical , Hippocampus/metabolism , Humans , Purinergic P1 Receptor Antagonists/metabolism , Receptor, Adenosine A2A/metabolism
19.
Int J Mol Sci ; 23(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35563447

ABSTRACT

The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer's disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world's old population (>65 years of age). Amyloid peptide-ß extracellular accumulation and neurofibrillary tangles constitute the principal etiologic tracts, resulting in apoptosis, brain shrinkage, and neuroinflammation. Interestingly, a growing body of evidence suggests a role of NLRP3 inflammasome as a target to treat neurodegenerative diseases. It represents a tripartite multiprotein complex including NLRP3, ASC, and procaspase-1. Its activation requires two steps that lead with IL-1ß and IL-18 release through caspase-1 activation. NLRP3 inhibition provides neuroprotection, and in recent years adenosine, through the A2A receptor, has been reported to modulate NLRP3 functions to reduce organ damage. In this review, we describe the role of NLRP3 in AD pathogenesis, both alone and in connection to A2A receptor regulation, in order to highlight a novel approach to address treatment of AD.


Subject(s)
Alzheimer Disease , Inflammasomes , Receptors, Adenosine A2 , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Adenosine A2/metabolism , Receptors, Adenosine A2/therapeutic use
20.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35551034

ABSTRACT

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Subject(s)
Histone Deacetylase Inhibitors , Hydroxamic Acids , Animals , Cell Survival , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Mice , Rats , Repressor Proteins , Tubulin/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...