Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20170910

ABSTRACT

BackgroundPathogenesis of Coronavirus disease 2019 (Covid-19) is poorly understood. Most histologic studies come from post-mortem analysis, with existing data indicating that histologic features of acute respiratory distress syndrome are typically present in fatal cases. However, this observation may be misleading, due to confounding factors in pre-terminal disease, including injury resulting from prolonged mechanical ventilation. Ante-mortem lung biopsy may provide major pathogenetic insights, potentially providing a basis for novel treatment approaches. AimThis comparative, multicenter, prospective, observational study was planned to identify ante-mortem histological profile and immunohistochemical features of lung tissue in patients with Covid-19 in early and late phases of the disease, including markers of inflammatory cells and major pathways involved in the cytokine storm triggering. MethodsEnrolled patients underwent lung biopsy, according to the study protocol approved by local Ethical Committee, either within 15 days of the first symptoms appearing (early phase) or after >15 days (more advanced disease). Key exclusion criteria were excessive or uncorrectable bleeding risk and cardiovascular disease with heart failure. Lung samples were obtained by conventional transbronchial biopsy, trans-bronchial lung cryobiopsy or surgical lung biopsy. Results23 patients were enrolled: 12 patients underwent lung biopsy within 15 days and 11 patients more than 15 days after the onset of symptoms. Early biopsies were characterized by spots of patchy acute lung injury (ALI) with alveolar type II cells hyperplasia and significant vascular abnormalities (disordered angiogenesis with alveolar capillary hyperplasia, luminal enlargement and thickened walls of pulmonary venules, perivascular CD4-T-cell infiltration), with no hyaline membranes. In the later stages, the alveolar architecture appeared disrupted, with areas of organizing ALI, venular congestion and capillary thromboembolic microangiopathy. Striking phenotypic features were demonstrated in hyperplastic pneumocytes and endothelial cells, including the expression of phospho-STAT3 and molecules involved in immunoinhibitory signals (PD-L1 and IDO-1). Alveolar macrophages exhibited macrophage-related markers (CD68, CD11c, CD14) together with unusual markers, such as DC-Lamp/CD208, CD206, CD123/IL3AR. ConclusionA morphologically distinct "Covid pattern" was identified in the earlier stages of the disease, with prominent epithelial and endothelial cell abnormalities, that may be potentially reversible, differing strikingly from findings in classical diffuse alveolar damage. These observations may have major therapeutic implications, justifying studies of early interventions aimed at mitigating inflammatory organ injury.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20170894

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, COVID-19 has appeared as a unique disease with unconventional tissue and systemic immune features. While COVID-19 severe forms share clinical and laboratory aspects with various pathologies such as hemophagocytic lymphohistiocytosis, sepsis or cytokine release syndrome, their exact nature remains unknown. This is severely impeding the ability to treat patients facing severe stages of the disease. To this aim, we performed an in-depth, single-cell RNA-seq analysis of more than 150.000 immune cells isolated from matched blood samples and broncho-alveolar lavage fluids of COVID-19 patients and healthy controls, and integrated it with clinical, immunological and functional ex vivo data. We unveiled an immune signature of disease severity that correlated with the accumulation of naive lymphoid cells in the lung and an expansion and activation of myeloid cells in the periphery. Moreover, we demonstrated that myeloid-driven immune suppression is a hallmark of COVID-19 evolution and arginase 1 expression is significantly associated with monocyte immune regulatory features. Noteworthy, we found monocyte and neutro-phil immune suppression loss associated with fatal clinical outcome in severe patients. Additionally, our analysis discovered that the strongest association of the patients clinical outcome and immune phenotype is the lung T cell response. We found that patients with a robust CXCR6+ effector memory T cell response have better outcomes. This result is line with the rs11385942 COVID-19 risk allel, which is in proximity to the CXCR6 gene and suggest effector memory T cell are a primary feature in COVID-19 patients. By systemically quantifying the viral landscape in the lung of severe patients, we indeed identified Herpes-Simplex-Virus 1 (HSV-1) as a potential opportunistic virus in COVID-19 patients. Lastly, we observed an unexpectedly high SARS-CoV-2 viral load in an immuno-compromised patient, allowing us to study the SARS-CoV-2 in-vivo life cycle. The development of myeloid dysfunctions and the impairment of lymphoid arm establish a condition of immune paralysis that supports secondary bacteria and virus infection and can progress to "immune silence" in patients facing death.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20135319

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing pandemic coronavirus disease 2019 (COVID-19). The majority of patients with COVID-19 have a good prognosis, but variable percentages in different countries develop pneumonia associated with lymphocytopenia and severe inflammatory response due to uncontrolled release of cytokines. These immune mediators are transcriptionally regulated by JAK-STAT molecular pathways, which can be disabled by small molecules. Here, we provide evidences on the efficacy of baricitinib, a JAK1/JAK2 inhibitor, in correcting the immune abnormalities observed in patients hospitalized with COVID-19. Indeed, we demonstrate a significant reduction in serum levels of interleukin (IL)-6, IL-1{beta} and tumor necrosis factor (TNF), a rapid recovery in circulating T and B cell frequencies and an increased antibody production against SARS-CoV-2 spike protein in baricitinib-treated patients. Moreover, treated patients underwent a rapid reduction in oxygen flow need and progressive increase in the P/F. Our work provides the basis on developing effective treatments against COVID-19 pathogenesis using on-target therapy.

4.
Blood ; 107(5): 2112-22, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16269622

ABSTRACT

To identify the molecular basis underlying the functions of tumor-associated macrophages (TAMs), we characterized the gene expression profile of TAMs isolated from a murine fibrosarcoma in comparison with peritoneal macrophages (PECs) and myeloid suppressor cells (MSCs), using a cDNA microarray technology. Among the differentially expressed genes, 15 genes relevant to inflammation and immunity were validated by real-time polymerase chain reaction (PCR) and protein production. Resting TAMs showed a characteristic gene expression pattern with higher expression of genes coding for the immunosuppressive cytokine IL-10, phagocytosis-related receptors/molecules (Msr2 and C1q), and inflammatory chemokines (CCL2 and CCL5) as expected, as well as, unexpectedly, IFN-inducible chemokines (CXCL9, CXCL10, CXCL16). Immunohistology confirmed and extended the in vitro analysis by showing that TAMs express M2-associated molecules (eg, IL-10 and MGL1), as well as CCL2, CCL5, CXCL9, CXCL10, and CXCL16, but no appreciable NOS2. Lipopolysaccharide (LPS)-mediated activation of TAMs resulted in defective expression of several proinflammatory cytokines (eg, IL-1beta, IL-6, TNF-alpha) and chemokines (eg, CCL3), as opposed to a strong up-regulation of immunosuppressive cytokines (IL-10, TGFbeta) and IFN-inducible chemokines (CCL5, CXCL9, CXCL10, CXCL16). Thus, profiling of TAMs from a murine sarcoma revealed unexpected expression of IFN-inducible chemokines, associated with an M2 phenotype (IL-10high, IL-12low), and divergent regulation of the NF-kappaB versus the IRF-3/STAT1 pathway.


Subject(s)
Fibrosarcoma/metabolism , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , STAT1 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Fibrosarcoma/pathology , Gene Expression Profiling , Humans , Immunohistochemistry , Macrophages/pathology , Male , Mice , Neoplasm Transplantation , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oligonucleotide Array Sequence Analysis , Phagocytosis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...