Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Saf Health Work ; 14(1): 107-117, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36941933

ABSTRACT

Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40°C, 30°C), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

2.
Int J Sports Med ; 42(2): 122-131, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32920802

ABSTRACT

The aim of this study was to evaluate the impact of using a cooling vest during physical exercise (per-cooling) in humid and temperate conditions (≈22°C, ≈80% relative humidity) on perceptual and physiological responses (tissue oxygenation and heart rate). 20 physically active men performed twice a 30-min cycling exercise at 70% of their theoretical maximum heart rate while using an activated (experimental condition) and a deactivated (control condition) cooling system in a randomized crossover study. Heart rate and tissue (cerebral and muscular) oxygenation were continuously measured during exercise and recovery, and skin temperature was measured every 10 min. Perception of temperature, humidity and comfort were assessed at the end of the recovery period. Results showed a decrease in trunk skin temperature (p<0.05), a faster heart rate recovery and an increase in the concentration of total hemoglobin at the brain level (p<0.05) compared with control condition. Moreover, an improved subjective rating of thermal sensations, wetness and comfort compared to control values (p<0.05) was noted. In conclusion, wearing a cooling vest during submaximal exercise improves perceptual and physiological responses in humid temperate conditions, which may be due to a better blood perfusion at the brain level and a better parasympathetic reactivation.


Subject(s)
Brain/physiology , Cryotherapy/methods , Exercise/physiology , Heart Rate/physiology , Oxygen Consumption/physiology , Skin Temperature/physiology , Adult , Clothing , Cross-Over Studies , Cryotherapy/instrumentation , Humans , Male , Young Adult
3.
Scand J Med Sci Sports ; 29(11): 1660-1676, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31340407

ABSTRACT

INTRODUCTION: Hyperthermia during exercise induces central and peripheral fatigue and impairs physical performance. To facilitate heat loss and optimize performance, athletes can hasten body cooling prior (pre-cooling) or during (per-cooling) exercise. However, it is unclear whether per-cooling effect is the same on 'aerobic' and 'anaerobic' types of exercise (duration <75 and >76 seconds, respectively, according to Gastin [Sports Med 2001;31:725-741]) and whether the body area that is cooled makes a difference. METHODS: A literature search led to the identification of 1582 potential studies. Included studies had to include physical exercise with sufficient details on the type, duration, intensity, and provide valid performance measures and a cooling intervention administered during exercise with sufficient details on the type and site of application. RESULTS: Forty-five studies were included. Per-cooling provides a performance benefit during 'aerobic' (standardized mean difference (SMD) of 0.60, P < .001) and 'anaerobic' exercises (SMD = 0.27, P < .02). The effects were greater during aerobic compared to anaerobic exercises (P < .01). Internal cooling (cold fluid ingestion such as cold water and ice slurry/menthol beverage) and external cooling (face, neck, and torso) provide the greatest performance benefit for 'aerobic' performance with a moderate to large effect (0.46 < SMD < 1.24). For 'anaerobic' exercises, wearing a whole-body cooling garment is the best way to enhance exercise performance (SMD = 0.39, P < .01). CONCLUSION: Per-cooling improves 'aerobic' and 'anaerobic' exercise performance with a greater benefit for 'aerobic' exercise. The magnitude of the effect depends on the type and site of the cooling application.


Subject(s)
Athletic Performance , Body Temperature Regulation , Cold Temperature , Exercise , Administration, Topical , Beverages , Drinking , Humans
4.
J Occup Environ Hyg ; 14(12): 939-946, 2017 12.
Article in English | MEDLINE | ID: mdl-28825871

ABSTRACT

In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide recommendations to both manufacturers and users.


Subject(s)
Nanoparticles/analysis , Particulate Matter , Personal Protective Equipment/standards , Air Pollutants, Occupational/analysis , Materials Testing/methods , Occupational Exposure/prevention & control , Particle Size , Sodium Chloride/chemistry , Textiles
5.
J Occup Environ Hyg ; 14(7): D95-D101, 2017 07.
Article in English | MEDLINE | ID: mdl-28278068

ABSTRACT

Recent studies underline the potential health risks associated to the "nano" revolution, particularly for the workers who handle engineered nanoparticles (ENPs) that can be found in the formulation of several commercial products. Although many Health & Safety agencies recommend the use of protective gloves against chemicals, few studies have investigated the effectiveness of these gloves towards nanoparticle suspensions. Moreover, the data that are available are often contradictory. This study was designed to evaluate the effectiveness of protective gloves against nanoparticles in suspension. For this purpose, a new methodology was developed in order to take into account parameters encountered in the workplace such as mechanical deformations (MD) that simulate hand flexion and sweat. The effects of the precise experimental protocol on the concentrations of nanoparticles that were detected in the sampling suspension were assessed. Several samples of nitrile rubber gloves (73 µm thick), taken from different boxes, were brought into contact with gold nanoparticles (5 nm) in water. During their exposure to ENPs, the glove samples submitted systematic mechanical deformations and were placed in contact with a physiological solution simulating human sweat. Under these conditions, results obtained by inductively coupled plasma mass spectrometry (ICPMS) showed that the 5 nm gold nanoparticles passed through the protective gloves. This result was acquired, in spite of the observation of significant losses during the sampling phase that will be important for future experiments evaluating the effectiveness of these materials.


Subject(s)
Gloves, Protective/standards , Materials Testing/methods , Metal Nanoparticles , Nitriles , Equipment Failure , Gold/chemistry , Occupational Exposure/prevention & control , Permeability , Sweat/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...