Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 3905, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724522

ABSTRACT

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Subject(s)
Brain Neoplasms , Chromatin , Gene Expression Regulation, Neoplastic , Glioblastoma , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromatin/metabolism , Chromatin/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Genetic Heterogeneity , Promoter Regions, Genetic/genetics , Transcription, Genetic , Enhancer Elements, Genetic/genetics , Chromosomes, Human/genetics
2.
Cell Mol Life Sci ; 78(5): 2299-2314, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32970185

ABSTRACT

Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , MicroRNAs/genetics , Telomere Homeostasis/genetics , 3' Untranslated Regions/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Tankyrases/genetics , Tankyrases/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism
3.
J Cell Physiol ; 236(5): 3178-3193, 2021 05.
Article in English | MEDLINE | ID: mdl-33094503

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that function as posttranscriptional gene regulators. Among a pool of >2600 known human mature miRNAs, only a small subset have been functionally interrogated and a further smaller pool shown to be associated with the pathogenesis of a variety of diseases suggesting their critical role in maintaining homeostasis. Here, we draw your attention to one such miRNA, miR-490, that has been reported to be deregulated in a myriad of diseases (23 diseases) ranging from cardiomyopathy, depression, and developmental disorders to many cancer types (28 cancer types), such as hepatocellular carcinoma, gastric cancer, cancers of the reproductive and central nervous system among others. The prognostic and diagnostic potential of miR-490 has been reported in many diseases including cancer underlining its clinical relevance. We also collate a complex plethora of epigenetic (histone and DNA methylation), transcriptional (TF), and posttranscriptional (lncRNA and circRNA) mechanisms that have been shown to tightly regulate miR-490 levels. The targets of miR-490 involve a range of cancer-related genes involved in the regulation of various cancer hallmarks like cell proliferation, migration, and invasion, apoptotic cell death, angiogenesis, and so forth. Overall, our in-depth review highlights for the first time the emerging role of miR-490 in disease pathology, diagnosis, and prognosis that assigns a unique therapeutic potential to miR-490 in the era of precision medicine.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Cell Proliferation/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...