Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters










Publication year range
1.
Food Res Int ; 187: 114412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763662

ABSTRACT

Lipid oxidation limits the shelf-life of dried microencapsulated oils (DMOs), such as infant formula. However, it is poorly understood how lipid oxidation is affected by different types of emulsifiers. To improve our understanding, we prepared DMOs with different emulsifiers (whey protein isolate (WPI), pea protein isolate (PPI), and non-proteinaceous CITREM) and studied lipid oxidation in both the free and encapsulated fat. Only a small difference in oxidation rate was observed between these fat fractions for all formulations. We ascribed this to a non-discrete distribution of the fractions and the subsequent low fractionation selectivity as shown by Raman microscopy. The DMO with PPI showed hardly any oxidation during a 7-week incubation at 40 °C, whereas the DMOs with WPI and CITREM both reached significantly higher contents of oxidation products (lipid hydroperoxides, aldehydes, and epoxides). The enhanced stability of DMO-PPI could not be ascribed to the presence of phytic acid. In conclusion, we demonstrate the potential of using PPI to produce oxidatively stable DMOs.


Subject(s)
Emulsifying Agents , Emulsions , Oxidation-Reduction , Emulsifying Agents/chemistry , Emulsions/chemistry , Whey Proteins/chemistry , Pea Proteins/chemistry , Spray Drying , Drug Compounding , Lipids/chemistry , Infant Formula/chemistry
2.
Food Chem ; 453: 139586, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38761723

ABSTRACT

To aid valorisation of beer brewing by-products, more insight into their composition is essential. We have analysed the phenolic compound composition of four brewing by-products, namely barley rootlets, spent grain, hot trub, and cold trub. The main phenolics detected were hydroxycinnamoylagmatines and dimers thereof. Barley rootlets contained the highest hydroxycinnamoylagmatine content and cold trub the highest dimer content. Additionally, variations in (dimeric) hydroxycinnamoylagmatine composition and content were observed in fourteen barley rootlet samples. The most abundant compound in all rootlets was the glycosylated 4-O-7'/3-8'-linked heterodimer of coumaroylagmatine and feruloylagmatine, i.e. CouAgm-4-O-7'/3-8'-(4'Hex)-DFerAgm. Structures of glycosylated and hydroxylated derivatives of coumaroylagmatine were elucidated by NMR spectroscopy after their purification from a rootlet extract. An MS-based decision tree was developed, which aids in identifying hydroxycinnamoylagmatine dimers in complex mixtures. In conclusion, this study shows that the diversity of phenolamides and (neo)lignanamides in barley-derived by-products is larger than previously reported.

3.
J Agric Food Chem ; 72(12): 6781-6786, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470138

ABSTRACT

This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.


Subject(s)
Antioxidants , Lycium , Antioxidants/chemistry , Lycium/chemistry , Amides , Fruit/chemistry , Phenols/chemistry
4.
Food Chem ; 446: 138898, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38447386

ABSTRACT

Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.


Subject(s)
Hordeum , Hordeum/metabolism , Trametes/metabolism , Oxidation-Reduction , Phenols , Oxidative Stress , Laccase/metabolism
5.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498184

ABSTRACT

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Subject(s)
Hydrogen Peroxide , Perchlorates , Phenols , Sulfoxides , High-Throughput Screening Assays , Xylenes/chemistry , Lipoxygenases
6.
J Nutr Biochem ; 128: 109605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401691

ABSTRACT

The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.


Subject(s)
Adipose Tissue , Caloric Restriction , Endocannabinoids , Lipoprotein Lipase , Obesity, Abdominal , Humans , Endocannabinoids/metabolism , Endocannabinoids/blood , Middle Aged , Male , Female , Adult , Aged , Adipose Tissue/metabolism , Obesity, Abdominal/diet therapy , Obesity, Abdominal/metabolism , Obesity, Abdominal/blood , Lipoprotein Lipase/metabolism , Ethanolamines/metabolism , Nutrients/metabolism
7.
Food Funct ; 15(4): 1852-1866, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38086658

ABSTRACT

The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.


Subject(s)
Glycyrrhiza , Isoflavones , Animals , Mice , Isoflavones/pharmacology , Phenols/pharmacology , Phenols/metabolism , Antioxidants/metabolism
8.
Anal Bioanal Chem ; 416(3): 787-799, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847408

ABSTRACT

Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids. However, the presence of lipid species in both their non-oxidized and oxidized forms at distinctly different concentrations can hinder the detection and identification of the less abundant oxidized species, due to coelution. In this study, a flow injection mass spectrometry approach was used to selectively ionize oxidized triacylglycerols versus their non-oxidized precursors. Three mobile phase additives were investigated (ammonium formate, sodium acetate, and sodium iodide) at three different concentrations, and ion source settings (i.e., sheath gas temperature, capillary voltage, and nozzle voltage) were optimized. A fractional factorial design was conducted to examine not only the direct effect of the operating parameters on the selectivity of ionization for the oxidized lipid species, but also to assess their combined effect. Overall, selective ionization of oxidized versus non-oxidized lipid species was favored by the use of sodium-containing solvent additives. The application of specific ion source settings resulted in an increased ionization selectivity, with sheath gas temperature and capillary voltage having the most significant influence. A selectivity factor as high as 120 could be reached by combining 0.1 mg/mL sodium-containing additives, with 250 °C sheath gas temperature and 5000 V capillary voltage. These findings will contribute to future studies on fast detection and relative quantification of low abundant oxidized triacylglycerols and their possible impact on human health.


Subject(s)
Lipids , Sodium , Humans , Solvents , Mass Spectrometry , Triglycerides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
9.
J Colloid Interface Sci ; 657: 352-362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043237

ABSTRACT

Oleosins are proteins with a unique central hydrophobic hairpin designed to stabilize lipid droplets (oleosomes) in plant seeds. For efficient droplet stabilization, the hydrophobic hairpin with a strong affinity for the apolar droplet core is flanked by hydrophilic arms on each side. This gives oleosins a unique surfactant-like shape making them a very interesting protein. In this study, we tested if isolated oleosins retain their ability to stabilize oil-in-water emulsions, and investigated the underlying stabilization mechanism. Due to their surfactant-like shape, oleosins when dispersed in aqueous buffers associated to micelle-like nanoparticles with a size of ∼33 nm. These micelles, in turn, clustered into larger aggregates of up to 20 µm. Micelle aggregation was more extensive when oleosins lacked charge. During emulsification, oleosin micelles and micelle aggregates dissociated and mostly individual oleosins adsorbed on the oil droplet interface. Oleosins prevented the coalescence of the oil droplets and if sufficiently charged, droplet flocculation as well.


Subject(s)
Micelles , Plant Proteins , Plant Proteins/chemistry , Surface-Active Agents/metabolism , Seeds/chemistry
10.
Food Res Int ; 175: 113687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128979

ABSTRACT

Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Proteomics , Phenols/pharmacology , Phenols/metabolism , Anti-Infective Agents/pharmacology
11.
Sci Rep ; 13(1): 22548, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110428

ABSTRACT

Overexpression of NorA efflux pumps plays a pivotal role in the multidrug-resistance mechanism in S. aureus. Here, we investigated the activities of prenylated isoflavonoids, present in the legume plant family (Fabaceae), as natural efflux pump inhibitors (EPIs) in fluoroquinolone-resistant S. aureus. We found that four prenylated isoflavonoids, namely neobavaisoflavone, glabrene, glyceollin I, and glyceollin III, showed efflux pump inhibition in the norA overexpressing S. aureus. At sub-inhibitory concentrations, neobavaisoflavone (6.25 µg/mL, 19 µM) and glabrene (12.5 µg/mL, 39 µM), showed up to 6 times more Eth accumulation in norA overexpressing S. aureus than in the control. In addition, these two compounds boosted the MIC of fluoroquinolones up to eightfold. No fluoroquinolone potentiation was observed with these isoflavonoids in the norA knockout strain, indicating NorA as the main target of these potential EPIs. In comparison to the reported NorA EPI reserpine, neobavaisoflavone showed similar potentiation of fluoroquinolone activity at 10 µM, higher Eth accumulation, and less cytotoxicity. Neobavaisoflavone and glabrene did not exhibit membrane permeabilization effects or cytotoxicity on Caco-2 cells. In conclusion, our findings suggest that the prenylated isoflavonoids neobavaisoflavone and glabrene are promising phytochemicals that could be developed as antimicrobials and resistance-modifying agents to treat fluoroquinolone-resistant S. aureus strains.


Subject(s)
Fabaceae , Flavones , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ciprofloxacin/pharmacology , Methicillin-Resistant Staphylococcus aureus/metabolism , Fabaceae/metabolism , Caco-2 Cells , Multidrug Resistance-Associated Proteins , Fluoroquinolones/pharmacology , Flavones/pharmacology , Bacterial Proteins/metabolism , Microbial Sensitivity Tests
12.
J Agric Food Chem ; 71(29): 11228-11238, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433201

ABSTRACT

In isolates from different pea cultivars, the legumin-to-vicilin (L:V) ratio is known to vary from 66:33 to 10:90 (w/w). In this study, the effect of variations in the L:V ratio on the pea protein emulsifying properties (emulsion droplet size (d3,2) vs protein concentration (Cp)) at pH 7.0 was investigated using a purified pea legumin (PLFsol) and pea vicilin fraction (PVFsol). Despite a different Γmax,theo, the interfacial properties at the oil-water interface and the emulsifying properties were similar for PLFsol and PVFsol. Hence, the L:V ratio did not affect the pea protein emulsifying properties. Further, PLFsol and PVFsol were less efficient than whey protein isolate (WPIsol) in stabilizing the emulsion droplets against coalescence. This was explained by their larger radius and thus slower diffusion. For this reason, the difference in diffusion rate was added as a parameter to the surface coverage model. With this addition, the surface coverage model described the d3,2 versus Cp of the pea protein samples well.


Subject(s)
Fabaceae , Pea Proteins , Pisum sativum/chemistry , Emulsions/chemistry , Pea Proteins/metabolism , Proteins/metabolism , Vegetables , Emulsifying Agents/chemistry
13.
Microbiol Spectr ; 11(4): e0132723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37428107

ABSTRACT

Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.


Subject(s)
Refuse Disposal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Food , Tryptophan/metabolism , Yeasts , Lipids , Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
14.
ACS Food Sci Technol ; 3(6): 1111-1121, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37342238

ABSTRACT

In iron-fortified bouillon, reactivity of the iron ion with (acylated) flavone glycosides from herbs can affect product color and bioavailability of iron. This study investigates the influence of 7-O-glycosylation and additional 6″-O-acetylation or 6″-O-malonylation of flavones on their interaction with iron. Nine (6″-O-acylated) flavone 7-O-apiosylglucosides were purified from celery (Apium graveolens), and their structures were elucidated by mass spectrometry (MS) and nuclear magnetic resonance (NMR). In the presence of iron, a bathochromic shift and darker color were observed for the 7-O-apiosylglucosides compared to the aglycon of flavones that only possess the 4-5 site. Thus, the ability of iron to coordinate to the flavone 4-5 site is increased by 7-O-glycosylation. For flavones with an additional 3'-4' site, less discoloration was observed for the 7-O-apiosylglucoside compared to the aglycon. Additional 6″-O-acylation did not affect the color. These findings indicate that model systems used to study discoloration in iron-fortified foods should also comprise (acylated) glycosides of flavonoids.

15.
Food Chem ; 425: 136446, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37245463

ABSTRACT

Auto-oxidation of flavan-3-ols leads to browning and consequently loss of product quality during storage of ready-to-drink (RTD) green tea. The mechanisms and products of auto-oxidation of galloylated catechins, the major flavan-3-ols in green tea, are still largely unknown. Therefore, we investigated auto-oxidation of epicatechin gallate (ECg) in aqueous model systems. Oxidation products tentatively identified based on MS included δ- or γ-type dehydrodicatechins (DhC2s) as the main contributors to browning. Additionally, various colourless products were detected, including epicatechin (EC) and gallic acid (GA) from degalloylation, ether-linked ε-type DhC2s, and 6 new coupling products of ECg and GA possessing a lactone interflavanic linkage. Supported by density function theory (DFT) calculations, we provide a mechanistic explanation on how presence of gallate moieties (D-ring) and GA affect the reaction pathway. Overall, presence of gallate moieties and GA resulted in a different product profile and less intense auto-oxidative browning of ECg compared to EC.


Subject(s)
Catechin , Catechin/analysis , Gallic Acid , Tea/metabolism , Oxidative Stress
16.
Food Res Int ; 165: 112485, 2023 03.
Article in English | MEDLINE | ID: mdl-36869498

ABSTRACT

Chymotrypsin is one of the major proteases in intestinal protein digestion. Observations about the type of bonds that are hydrolysed (specificity and preference) were in the past derived from the peptide composition after digestion or hydrolysis rates of synthetic peptides. In this study, the path of hydrolysis by bovine chymotrypsin, i.e formation and degradation of peptides, were described for α-lactalbumin, ß-lactoglobulin and ß-casein. The peptide compositions, determined with UPLC-PDA-MS at different time points were used to determine the digestion kinetics for individual cleavage sites. It was evaluated how statements on (secondary) specificity from literature were reflected in the release kinetics of peptides. ß-Lactoglobulin reached the highest degree of hydrolysis (10.9 ± 0.1 %) and was hydrolysed fastest (28 ± 1 mMpeptide bonds/s/mMenzyme), regardless of its globular (tertiary) structure. Chymotrypsin showed a preference towards aromatic amino acids, methionine and leucine, but was also tolerant to other amino acids. For the cleavage sites within this preference, Ì´73% of the cleavage sites were hydrolysed with high or intermediate selectivity. For the missed cleavages within the preference, 45 % was explained by hindrance of proline, which affected hydrolysis only when in positions P3, P1' or P2'. No clear indication (based on primary structure) was found to explain the other missed cleavages. A few cleavage sites were hydrolysed extremely efficient in α-lactalbumin (F9, F31, W104) and ß-casein (W143, L163, F190). This study gave unique and quantitative insight in peptide formation and degradation by chymotrypsin in the digestion of proteins. The approach used showed potential to explore the path of hydrolysis for other proteases with less defined specificity.


Subject(s)
Caseins , Chymotrypsin , Cattle , Animals , Proteolysis , Lactalbumin , Endopeptidases , Peptide Hydrolases , Lactoglobulins , Transcription Factors
17.
Anal Chim Acta ; 1244: 340774, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36737151

ABSTRACT

Analytical techniques, such as liquid chromatography coupled to mass spectrometry (LC-MS) or nuclear magnetic resonance (NMR), are widely used for characterization of complex mixtures of (isomeric) proteins, carbohydrates, lipids, and phytochemicals in food. Food can contain isomers that are challenging to separate, but can possess different reactivity and bioactivity. Catechins are the main phenolic compounds in tea; they can be present as various stereoisomers, which differ in their chemical properties. Currently, there is a lack of fast and direct methods to monitor interconversion and individual reactivity of these epimers (e.g. epicatechin (EC) and catechin (C)). In this study, cyclic ion mobility mass spectrometry (cIMS-MS) was explored as a potential tool for the separation of catechin epimers. Formation of sodium and lithium adducts enhanced IMS separation of catechin epimers, compared to deprotonation and protonation. Baseline separation of the sodium adducts of catechin epimers was achieved. Moreover, we developed a fast method for the identification and semi-quantification of cIMS-MS separated catechin epimers. With this method, it is possible to semi-quantify the ratio between EC and C (1:5 to 5:1, within 50-1200 ng mL-1) in food samples, such as tea. Finally, the newly developed approach for cIMS-MS separation of flavonoids was demonstrated to be successful in separation of two sets of positional isomers (i.e. morin, tricetin, and quercetin; and kaempferol, fisetin, luteolin, and scutellarein). To conclude, we showed that both epimers and positional isomers of flavonoids can be separated using cIMS-MS, and established the potential of this method for challenging flavonoid separations.


Subject(s)
Catechin , Flavonoids , Flavonoids/analysis , Catechin/analysis , Catechin/chemistry , Mass Spectrometry/methods , Tea/chemistry , Sodium/analysis
18.
Int J Food Microbiol ; 390: 110109, 2023 Apr 02.
Article in English | MEDLINE | ID: mdl-36806890

ABSTRACT

Prenylated isoflavonoids can be extracted from plants of the Leguminosae/Fabaceae family and have shown remarkable antimicrobial activity against Gram-positive food-borne pathogens, such as Listeria monocytogenes. Promising candidates from this class of compounds are glabridin and 6,8-diprenylgenistein. This research aimed to investigate the potential of glabridin and 6,8-diprenylgenistein as food preservatives against L. monocytogenes. Their antimicrobial activity was tested in vitro at various conditions relevant for food application, such as different temperatures (from 10 °C to 37 °C), pH (5 and 7.2), and in the presence or absence of oxygen. The minimum inhibitory concentrations of glabridin and 6,8-diprenylgenistein in vitro were between 0.8 and 12.5 µg/mL in all tested conditions. Growth inhibitory activities were similar at 10 °C compared to higher temperatures, although bactericidal activities decreased when the temperature decreased. Notably, lower pH (pH 5) increased the growth inhibitory and bactericidal activity of the compounds, especially for 6,8-diprenylgenistein. Furthermore, similar antimicrobial efficacies were shown anaerobically compared to aerobically at the tested conditions. Glabridin showed a more stable inhibitory and bactericidal activity when the temperature decreased compared to 6,8-diprenylgenistein. Therefore, we further determined the antimicrobial efficacy of glabridin against L. monocytogenes growth on fresh-cut cantaloupe at 10 °C. In these conditions, concentrations of glabridin of 50, 100 and 250 µg/g significantly reduced the growth of L. monocytogenes compared to the control, resulting on average in >1 Log CFU/g difference after 4 days compared to the control. Our results further underscored the importance of considering the food matrix when assessing the activity of novel antimicrobials. Overall, this study highlights the potential of prenylated isoflavonoids as naturally derived food preservatives.


Subject(s)
Food Preservatives , Listeria monocytogenes , Food Preservatives/pharmacology , Colony Count, Microbial , Temperature , Food Microbiology , Food Preservation/methods
19.
Anal Biochem ; 665: 115048, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36657509

ABSTRACT

In recent years, several studies have used proteomics approaches to characterize genetic variant profiles of agricultural raw materials. In such studies, the challenge is the quantification of the individual protein variants. In this study a novel UPLC-PDA-MS method with absolute and label-free UV-based peptide quantification was applied to quantify the genetic variants of legumin, vicilin and albumins in pea extracts. The aim was to investigate the applicability of this method and to identify challenges in determining protein concentration from the measured peptide concentrations. Analysis of the protein mass balance showed significant losses of proteins in extraction (37%) and of peptides in further sample preparation (69%). The challenge in calculating the extractable individual protein concentrations was how to deal with these insoluble peptides. The quantification approach using average amino acid concentrations in each position of the sequence showed most reproducible results and allowed comparison of the genetic protein composition of 8 different cultivars. The extractable protein composition (µM/µM) was remarkably similar for all cultivar extracts and consisted of legumins A1 (12.8 ± 1.2%), A2 (1.1 ± 0.4%), B (9.9 ± 1.6%), J (7.5 ± 1.0%) and K (10.3 ± 2.1%), vicilin (15.2 ± 1.7%), provicilin (15.7 ± 2.5%), convicilin (9.8 ± 0.8%), albumin A1 (7.4 ± 2.0%), albumin 2 (10.0 ± 1.5%) and protease inhibitor (0.4 ± 0.4%).


Subject(s)
Pisum sativum , Plant Proteins , Pisum sativum/genetics , Pisum sativum/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Albumins/metabolism , Amino Acids/analysis
20.
Food Chem ; 407: 135156, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36525808

ABSTRACT

Mixed pyrophosphate salts with the general formula Ca2(1-x)Fe4x(P2O7)(1+2x) potentially possess less iron-phenolic reactivity compared to ferric pyrophosphate (FePP), due to decreased soluble Fe in the food-relevant pH range 3-7. We investigated reactivity (i.e., complexation, oxidation, and surface interaction) of FePP and mixed salts (with x = 0.14, 0.15, 0.18, and 0.35) in presence of structurally diverse phenolics. At pH 5-7, increased soluble iron from all salts was observed in presence of water-soluble phenolics. XPS confirmed that water-soluble phenolics solubilize iron after coordination at the salt surface, resulting in increased discoloration. However, color changes for mixed salts with x ≤ 0.18 remained acceptable for slightly water-soluble and insoluble phenolics. Furthermore, phenolic oxidation in presence of mixed salts was significantly reduced compared to FePP at pH 6. In conclusion, these mixed Ca-Fe(III) pyrophosphate salts with x ≤ 0.18 can potentially be used in designing iron-fortified foods containing slightly water-soluble and/or insoluble phenolics.


Subject(s)
Ferric Compounds , Salts , Diphosphates , Food, Fortified/analysis , Iron , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...