Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 11(13)2022 06 23.
Article in English | MEDLINE | ID: mdl-35805088

ABSTRACT

Insulin resistance in skeletal muscle in type 2 diabetes (T2D) is characterized by more pronounced metabolic and molecular defects than in obesity per se. There is increasing evidence that adipose tissue dysfunction contributes to obesity-induced insulin resistance in skeletal muscle. Here, we used an unbiased approach to examine if adipose tissue dysfunction is exaggerated in T2D and linked to diabetes-related mechanisms of insulin resistance in skeletal muscle. Transcriptional profiling and biological pathways analysis were performed in subcutaneous adipose tissue (SAT) and skeletal muscle biopsies from 17 patients with T2D and 19 glucose-tolerant, age and weight-matched obese controls. Findings were validated by qRT-PCR and western blotting of selected genes and proteins. Patients with T2D were more insulin resistant and had lower plasma adiponectin than obese controls. Transcriptional profiling showed downregulation of genes involved in mitochondrial oxidative phosphorylation and the tricarboxylic-acid cycle and increased expression of extracellular matrix (ECM) genes in SAT in T2D, whereas genes involved in proteasomal degradation were upregulated in the skeletal muscle in T2D. qRT-PCR confirmed most of these findings and showed lower expression of adiponectin in SAT and higher expression of myostatin in muscle in T2D. Interestingly, muscle expression of proteasomal genes correlated positively with SAT expression of ECM genes but inversely with the expression of ADIPOQ in SAT and plasma adiponectin. Protein content of proteasomal subunits and major ubiquitin ligases were unaltered in the skeletal muscle of patients with T2D. A transcriptional signature of exaggerated adipose tissue dysfunction in T2D, compared with obesity alone, is linked to low plasma adiponectin and increased transcriptional activation of proteasomal degradation in skeletal muscle.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adiponectin/metabolism , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Humans , Insulin Resistance/genetics , Muscle, Skeletal/metabolism , Obesity/metabolism , Transcriptional Activation
2.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32112102

ABSTRACT

BACKGROUND: Circulating follistatin (Fst) binds activin A and thereby regulates biological functions such as muscle growth and ß-cell survival. However, Fst and activin A's implication in metabolic regulation is unclear. OBJECTIVE: To investigate circulating Fst and activin A in obesity and type 2 diabetes (T2D) and determine their association with metabolic parameters. Further, to examine regulation of Fst and activin A by insulin and the influence of obesity and T2D hereon. METHODS: Plasma Fst and activin A levels were analyzed in obese T2D patients (N = 10) closely matched to glucose-tolerant lean (N = 12) and obese (N = 10) individuals in the fasted state and following a 4-h hyperinsulinemic-euglycemic clamp (40 mU·m-2·min-1) combined with indirect calorimetry. RESULTS: Circulating Fst was ~30% higher in patients with T2D compared with both lean and obese nondiabetic individuals (P < .001), while plasma activin A was unaltered. In the total cohort, fasting plasma Fst correlated positively with fasting plasma glucose, serum insulin and C-peptide levels, homeostasis model assessment of insulin resistance, and hepatic and adipose tissue insulin resistance after adjusting for age, gender and group (all r > 0.47; P < .05). However, in the individual groups these correlations only achieved significance in patients with T2D (not plasma glucose). Acute hyperinsulinemia at euglycemia reduced circulating Fst by ~30% (P < .001) and this response was intact in patients with T2D. Insulin inhibited FST expression in human hepatocytes after 2 h and even further after 48 h. CONCLUSIONS: Elevated circulating Fst, but not activin A, is strongly associated with measures of insulin resistance in patients with T2D. However, the ability of insulin to suppress circulating Fst is preserved in T2D.


Subject(s)
Activins/blood , Diabetes Mellitus, Type 2/blood , Follistatin/blood , Insulin/physiology , Obesity/blood , Activins/metabolism , Blood Glucose/metabolism , C-Peptide/blood , Case-Control Studies , Fasting/blood , Female , Follistatin/metabolism , Hep G2 Cells , Humans , Insulin/metabolism , Insulin Resistance/physiology , Male , Middle Aged
3.
Diabetologia ; 60(10): 2042-2051, 2017 10.
Article in English | MEDLINE | ID: mdl-28721439

ABSTRACT

AIMS/HYPOTHESIS: Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS: The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). RESULTS: Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Exercise Therapy/methods , Fibroblast Growth Factors/blood , Insulin/therapeutic use , Obesity/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged , Obesity/drug therapy , Obesity/genetics , Obesity/therapy , Oxygen Consumption/physiology , Receptors, Fibroblast Growth Factor/genetics , Treatment Outcome
4.
Diabetologia ; 58(9): 2087-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26048236

ABSTRACT

AIMS/HYPOTHESIS: Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes. METHODS: Using a case-control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both euglycaemia and hyperglycaemia, and from glucose-tolerant lean and obese individuals during euglycaemia, were used for analysis of mRNA levels, protein abundance and phosphorylation of autophagy-related proteins. RESULTS: Muscle transcript levels of autophagy-related genes (ULK1, BECN1, PIK3C3, ATG5, ATG7, ATG12, GABARAPL1, MAP1LC3B, SQSTM1, TP53INP2 and FOXO3A [also known as FOXO3]), including some specific for mitophagy (BNIP3, BNIP3L and MUL1), and protein abundance of autophagy-related gene (ATG)7 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), as well as content and phosphorylation of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic patients, insulin action on LC3B was absent and p62/SQSTM1 content increased when studied under euglycaemia, whereas the responses of LC3B and p62/SQSTM1 to insulin were normalised during hyperglycaemia. CONCLUSIONS/INTERPRETATION: Our results demonstrate that the levels of autophagy-related genes and proteins in muscle are normal in obesity and type 2 diabetes. This suggests that muscle autophagy in type 2 diabetes has adapted to hyperglycaemia, which may contribute to preserve muscle mass.


Subject(s)
Autophagy , Diabetes Mellitus, Type 2/metabolism , Hyperglycemia/metabolism , Muscle, Skeletal/metabolism , Apoptosis Regulatory Proteins/metabolism , Biopsy , Case-Control Studies , Diabetes Mellitus, Type 2/immunology , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Glucose Clamp Technique , Glucose Tolerance Test , Homeostasis , Humans , Hyperglycemia/immunology , Insulin Resistance , Male , Microtubule-Associated Proteins/metabolism , Middle Aged , Mitochondria/metabolism , Muscle, Skeletal/immunology , Obesity/immunology , Phosphorylation , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism
5.
Diabetes ; 64(2): 485-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25187364

ABSTRACT

Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber type-specific expression/regulation of insulin signaling elements and/or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese, and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared with type II fibers have higher protein levels of the insulin receptor, GLUT4, hexokinase II, glycogen synthase (GS), and pyruvate dehydrogenase-E1α (PDH-E1α) and a lower protein content of Akt2, TBC1 domain family member 4 (TBC1D4), and TBC1D1. In type I fibers compared with type II fibers, the phosphorylation response to insulin was similar (TBC1D4, TBC1D1, and GS) or decreased (Akt and PDH-E1α). Phosphorylation responses to insulin adjusted for protein level were not different between fiber types. Independently of fiber type, insulin signaling was similar (TBC1D1, GS, and PDH-E1α) or decreased (Akt and TBC1D4) in muscle from patients with type 2 diabetes compared with lean and obese subjects. We conclude that human type I muscle fibers compared with type II fibers have a higher glucose-handling capacity but a similar sensitivity for phosphoregulation by insulin.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Obesity/metabolism , Signal Transduction/physiology , Female , Gene Expression Regulation , Humans , Male , Middle Aged
6.
PLoS One ; 7(12): e51302, 2012.
Article in English | MEDLINE | ID: mdl-23251491

ABSTRACT

BACKGROUND: Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins. METHODOLOGY/PRINCIPAL FINDINGS: Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were collected from 53-80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard deviation of intra-pair differences: 10% points vs. 4% points, P<0.001). Increased variation of LINE1 sequence methylation was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences. Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including PPARGC1A in muscle (13.9±6.2% vs. 9.0±4.5%, P = 0.03) and HNF4A in adipose tissue (75.2±3.8% vs. 70.5±3.7%, P<0.001) which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue, respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple testing. CONCLUSIONS/SIGNIFICANCE: Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger samples.


Subject(s)
Adipose Tissue/metabolism , DNA Methylation , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study , Muscle, Skeletal/metabolism , Twins, Monozygotic , Diabetes Mellitus, Type 2/genetics , Humans
7.
J Clin Endocrinol Metab ; 97(9): E1705-13, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22736774

ABSTRACT

CONTEXT: There is a need for a better understanding of the potential role of persistent organic pollutants (POPs) in the pathogenesis of type 2 diabetes. OBJECTIVE: Our objective was to determine the association of serum concentrations of POPs with early signs of type 2 diabetes in regard to glucose and lipid metabolism. RESEARCH DESIGN AND METHODS: In this cross-sectional study, we used recent studies of 148 Danish middle-aged normoglycemic, prediabetic, and diabetic individuals examined by the euglycemic-hyperinsulinemic clamp technique with indirect calorimetry; 66 of these individuals also had an i.v. glucose tolerance test. Concentrations of POPs were analyzed in banked serum from the participants. Associations with basal and insulin-stimulated glucose and lipid metabolism were assessed after adjustment for age, sex, and body fat percentage. RESULTS: Individuals with prediabetes and diabetes had higher serum concentrations of several POPs compared with normoglycemic individuals. In the nondiabetic population, higher POPs levels were associated with elevated fasting plasma glucose concentrations as well as reduced glucose oxidation, elevated lipid oxidation, and elevated serum concentrations of free fatty acids (P < 0.05). We found no associations of POPs with first-phase insulin secretion, hepatic or peripheral insulin sensitivity, or nonoxidative glucose metabolism. CONCLUSIONS: Diabetic and prediabetic individuals have elevated serum concentrations of POPs. In nondiabetic individuals, POPs exposure is related to altered substrate oxidation patterns with lower glucose oxidation and higher lipid oxidation rates. These findings indicate that POPs may affect peripheral glucose metabolism by modifying pathways involved in substrate partitioning rather than decreasing insulin-dependent glucose uptake.


Subject(s)
Environmental Pollutants/adverse effects , Environmental Pollutants/blood , Prediabetic State/blood , Body Mass Index , Chromatography, High Pressure Liquid , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Female , Glucose/metabolism , Glucose Clamp Technique , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Insulin Resistance/physiology , Insulin-Secreting Cells/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Male , Middle Aged , Obesity/blood , Oxidation-Reduction , Pancreatic Function Tests
8.
Nature ; 481(7382): 463-8, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22237023

ABSTRACT

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Subject(s)
Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Thermogenesis , Trans-Activators/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Cell Respiration/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Energy Metabolism/drug effects , Energy Metabolism/genetics , Energy Metabolism/physiology , Exercise/physiology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hormones/metabolism , Humans , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Ion Channels/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mitochondrial Proteins/metabolism , Models, Animal , Muscle Cells/metabolism , Obesity/blood , Obesity/chemically induced , Obesity/prevention & control , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal/physiology , Plasma/chemistry , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Trans-Activators/deficiency , Trans-Activators/genetics , Transcription Factors , Uncoupling Protein 1
9.
Am J Physiol Endocrinol Metab ; 298(3): E706-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20028967

ABSTRACT

The purpose of the study was to investigate the effect of aerobic training and type 2 diabetes on intramyocellular localization of lipids, mitochondria, and glycogen. Obese type 2 diabetic patients (n = 12) and matched obese controls (n = 12) participated in aerobic cycling training for 10 wk. Endurance-trained athletes (n = 15) were included for comparison. Insulin action was determined by euglycemic-hyperinsulinemic clamp. Intramyocellular contents of lipids, mitochondria, and glycogen at different subcellular compartments were assessed by transmission electron microscopy in biopsies obtained from vastus lateralis muscle. Type 2 diabetic patients were more insulin resistant than obese controls and had threefold higher volume of subsarcolemmal (SS) lipids compared with obese controls and endurance-trained subjects. No difference was found in intermyofibrillar lipids. Importantly, following aerobic training, this excess SS lipid volume was lowered by approximately 50%, approaching the levels observed in the nondiabetic subjects. A strong inverse association between insulin sensitivity and SS lipid volume was found (r(2)=0.62, P = 0.002). The volume density and localization of mitochondria and glycogen were the same in type 2 diabetic patients and control subjects, and showed in parallel with improved insulin sensitivity a similar increase in response to training, however, with a more pronounced increase in SS mitochondria and SS glycogen than in other localizations. In conclusion, this study, estimating intramyocellular localization of lipids, mitochondria, and glycogen, indicates that type 2 diabetic patients may be exposed to increased levels of SS lipids. Thus consideration of cell compartmentation may advance the understanding of the role of lipids in muscle function and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Exercise Therapy/methods , Glycogen/metabolism , Lipid Metabolism , Mitochondria/metabolism , Muscle, Skeletal/physiopathology , Sarcolemma/metabolism , Diabetes Mellitus, Type 2/therapy , Humans , Male , Middle Aged , Mitochondria/ultrastructure , Muscle, Skeletal/ultrastructure , Physical Endurance , Physical Fitness , Rest , Sarcolemma/ultrastructure , Tissue Distribution , Treatment Outcome
10.
Diabetes ; 56(6): 1592-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17351150

ABSTRACT

We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Biopsy , Blood Glucose/metabolism , Citrate (si)-Synthase/metabolism , Diabetes Mellitus, Type 2/pathology , Electron Transport , Humans , Male , Middle Aged , Mitochondria, Muscle/pathology , Obesity/metabolism , Obesity/pathology , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...