Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(20): 28740-28749, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114785

ABSTRACT

Improving the sensitivity of plasmonic optical fiber sensors constitutes a major challenge as it could significantly enhance their sensing capabilities for the label-free detection of biomolecular interactions or chemical compounds. While many efforts focus on developing more sensitive structures, we present here how the sensitivity of a sensor can be significantly enhanced by improving the light analysis. Contrary to the common approach where the global intensity of the light coming from the core is averaged, our approach is based on the full analysis of the retro-reflected intensity distribution that evolves with the refractive index of the medium being analyzed. Thanks to this original and simple approach, the refractive index sensitivity of a plasmonic optical fiber sensor used in reflection mode was enhanced by a factor of 25 compared to the standard method. The reported approach opens exciting perspectives for improving the remote detection as well as for developing new sensing strategies.

2.
Sensors (Basel) ; 20(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963277

ABSTRACT

The development of sensitive methods for in situ detection of biomarkers is a real challenge to bring medical diagnosis a step forward. The proof-of-concept of a remote multiplexed biomolecular interaction detection through a plasmonic optical fiber bundle is demonstrated here. The strategy relies on a fiber optic biosensor designed from a 300 µm diameter bundle composed of 6000 individual optical fibers. When appropriately etched and metallized, each optical fiber exhibits specific plasmonic properties. The surface plasmon resonance phenomenon occurring at the surface of each fiber enables to measure biomolecular interactions, through the changes of the retro-reflected light intensity due to light/plasmon coupling variations. The functionalization of the microstructured bundle by multiple protein probes was performed using new polymeric 3D-printed microcantilevers. Such soft cantilevers allow for immobilizing the probes in micro spots, without damaging the optical microstructures nor the gold layer. We show here the potential of this device to perform the multiplexed detection of two different antibodies with limits of detection down to a few tenths of nanomoles per liter. This tool, adapted for multiparametric, real-time, and label free monitoring is minimally invasive and could then provide a useful platform for in vivo targeted molecular analysis.


Subject(s)
Biosensing Techniques/methods , Optical Fibers , Surface Plasmon Resonance/methods , Animals , Antibodies/analysis , Biosensing Techniques/instrumentation , Equipment Design , Gold/chemistry , Limit of Detection , Rats , Surface Plasmon Resonance/instrumentation , Surface Properties
3.
Anal Bioanal Chem ; 411(11): 2249-2259, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798337

ABSTRACT

Remote detection by surface plasmon resonance (SPR) is demonstrated through microstructured optical arrays of conical nanotips or micropillars. Both geometries were fabricated by controlled wet chemical etching of bundles comprising several thousands of individual optical fibers. Their surface was coated by a thin gold layer in order to confer SPR properties. The sensitivity and resolution of both shapes were evaluated as a function of global optical index changes in remote detection mode performed by imaging through the etched optical fiber bundle itself. With optimized geometry of micropillar arrays, resolution was increased up to 10-4 refractive index units. The gold-coated micropillar arrays were functionalized with DNA and were able to monitor remotely the kinetics of DNA hybridization with complementary strands. We demonstrate for the first time highly parallel remote SPR detection of DNA via microstructured optical arrays. The obtained SPR sensitivity combined with the remote intrinsic properties of the optical fiber bundles should find promising applications in biosensing, remote SPR imaging, a lab-on-fiber platform dedicated to biomolecular analysis, and in vivo endoscopic diagnosis. Graphical abstract We present a single fabrication step to structure simultaneously all the individual cores of an optical fiber bundle composed of thousands of fibers. The resulting sensor is optimized for reflection mode (compatible with in vivo applications) and is used to perform for the first time highly parallel remote SPR detection of DNA via several thousands of individual optical fiber SPR sensors paving the way for multiplexed biological detection.


Subject(s)
DNA/analysis , Nucleic Acid Hybridization , Optical Fibers , Surface Plasmon Resonance/instrumentation , Equipment Design , Fiber Optic Technology/instrumentation , Gold/chemistry , Immobilized Nucleic Acids/chemistry , Refractometry
SELECTION OF CITATIONS
SEARCH DETAIL
...