Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36145709

ABSTRACT

Gene electrotransfer is one of the main non-viral methods for intracellular delivery of plasmid DNA, wherein pulsed electric fields are used to transiently permeabilize the cell membrane, allowing enhanced transmembrane transport. By localizing the electric field over small portions of the cell membrane using nanostructured substrates, it is possible to increase considerably the gene electrotransfer efficiency while preserving cell viability. In this study, we expand the frontier of localized electroporation by designing an electrotransfer approach based on commercially available cell culture inserts with polyethylene-terephthalate (PET) porous substrate. We first use multiscale numerical modeling to determine the pulse parameters, substrate pore size, and other factors that are expected to result in successful gene electrotransfer. Based on the numerical results, we design a simple device combining an insert with substrate containing pores with 0.4 µm or 1.0 µm diameter, a multiwell plate, and a pair of wire electrodes. We test the device in three mammalian cell lines and obtain transfection efficiencies similar to those achieved with conventional bulk electroporation, but at better cell viability and with low-voltage pulses that do not require the use of expensive electroporators. Our combined theoretical and experimental analysis calls for further systematic studies that will investigate the influence of substrate pore size and porosity on gene electrotransfer efficiency and cell viability.

SELECTION OF CITATIONS
SEARCH DETAIL
...