Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894953

ABSTRACT

Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.


Subject(s)
HIV-1 , Humans , HIV-1/metabolism , Amino Acid Sequence , HEK293 Cells , Viral Proteins/metabolism , Virion/metabolism , RNA/metabolism , Zinc/metabolism , Zinc Isotopes/metabolism , Isotopes/metabolism , Zinc Fingers
2.
Nucleic Acids Res ; 51(14): 7580-7601, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37254812

ABSTRACT

The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.


Subject(s)
Selenium , Humans , Codon, Terminator , Mutation , Selenium/pharmacology , Selenium/metabolism , Selenocysteine/genetics , Selenocysteine/metabolism , Selenoproteins/genetics , Proteome
3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163318

ABSTRACT

The infection of CD4 T-lymphocytes with human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), disrupts cellular homeostasis, increases oxidative stress and interferes with micronutrient metabolism. Viral replication simultaneously increases the demand for micronutrients and causes their loss, as for selenium (Se). In HIV-infected patients, selenium deficiency was associated with a lower CD4 T-cell count and a shorter life expectancy. Selenium has an important role in antioxidant defense, redox signaling and redox homeostasis, and most of these biological activities are mediated by its incorporation in an essential family of redox enzymes, namely the selenoproteins. Here, we have investigated how selenium and selenoproteins interplay with HIV infection in different cellular models of human CD4 T lymphocytes derived from established cell lines (Jurkat and SupT1) and isolated primary CD4 T cells. First, we characterized the expression of the selenoproteome in various human T-cell models and found it tightly regulated by the selenium level of the culture media, which was in agreement with reports from non-immune cells. Then, we showed that selenium had no significant effect on HIV-1 protein production nor on infectivity, but slightly reduced the percentage of infected cells in a Jurkat cell line and isolated primary CD4 T cells. Finally, in response to HIV-1 infection, the selenoproteome was slightly altered.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/metabolism , Selenium/metabolism , Selenoproteins/metabolism , Virus Replication/physiology , Acquired Immunodeficiency Syndrome/metabolism , Antioxidants/metabolism , Cell Line, Tumor , Glutathione Peroxidase/metabolism , HEK293 Cells , Humans , Jurkat Cells , Oxidative Stress/physiology
4.
Nucleic Acids Res ; 48(22): 12502-12522, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33264393

ABSTRACT

Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , Protein Biosynthesis/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Gene Expression Regulation, Viral , Humans , Pandemics , SARS-CoV-2/physiology , Virus Replication
5.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31855182

ABSTRACT

mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs.


Subject(s)
Base Composition/genetics , RNA Stability/genetics , RNA, Messenger, Stored/genetics , RNA, Messenger/genetics , Gene Expression Regulation/genetics , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Protein Biosynthesis/genetics , RNA, Messenger/chemistry , RNA, Messenger, Stored/chemistry , Transcriptome/genetics
6.
Nutrients ; 11(9)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487871

ABSTRACT

Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.


Subject(s)
Selenium/metabolism , Selenoproteins/metabolism , Virus Diseases/metabolism , Antioxidants/metabolism , Humans , Reactive Oxygen Species
7.
Wiley Interdiscip Rev RNA ; 10(6): e1557, 2019 11.
Article in English | MEDLINE | ID: mdl-31231973

ABSTRACT

Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.


Subject(s)
RNA-Binding Proteins/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
8.
Cells ; 8(6)2019 06 11.
Article in English | MEDLINE | ID: mdl-31212706

ABSTRACT

The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3' UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.


Subject(s)
CRISPR-Cas Systems/genetics , Codon, Terminator/genetics , RNA, Transfer, Amino Acid-Specific/genetics , Ribosomes/metabolism , Selenocysteine/metabolism , Virion/metabolism , Base Sequence , Gene Editing , HEK293 Cells , HeLa Cells , Humans , INDEL Mutation/genetics , Nucleic Acid Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Amino Acid-Specific/chemistry , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism
9.
Biochim Biophys Acta Gen Subj ; 1862(11): 2480-2492, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29751099

ABSTRACT

BACKGROUND: Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW: The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS: The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE: The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation.

10.
Cell Rep ; 20(5): 1187-1200, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28768202

ABSTRACT

Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.


Subject(s)
DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , N-Terminal Acetyltransferase C/metabolism , Proto-Oncogene Proteins/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , AU Rich Elements/physiology , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , N-Terminal Acetyltransferase C/genetics , Proto-Oncogene Proteins/genetics , RNA Precursors/genetics , RNA-Binding Proteins/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/genetics
11.
Nucleic Acids Res ; 44(13): 6318-34, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27342281

ABSTRACT

4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence/genetics , Binding Sites , DEAD-box RNA Helicases/genetics , DNA-Binding Proteins/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation/genetics , HEK293 Cells , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/genetics , Protein Binding , Protein Interaction Maps/genetics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics
12.
Biochem Pharmacol ; 89(4): 431-40, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24735612

ABSTRACT

Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/drug effects , Animals , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Molecular Targeted Therapy , Protein Processing, Post-Translational/drug effects , RNA Processing, Post-Transcriptional/drug effects , RNA Stability/drug effects , RNA, Messenger/chemistry , RNA-Binding Proteins/antagonists & inhibitors , Signal Transduction/drug effects
13.
J Biol Chem ; 287(42): 35527-35538, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22932903

ABSTRACT

The destabilization of AU-rich element (ARE)-containing mRNAs mediated by proteins of the TIS11 family is conserved among eukaryotes including Drosophila. Previous studies have demonstrated that Tristetraprolin, a human protein of the TIS11 family, induces the degradation of ARE-containing mRNAs through a large variety of mechanisms including deadenylation, decapping, and P-body targeting. We have previously shown that the degradation of the mRNA encoding the antimicrobial peptide Cecropin A1 (CecA1) is controlled by the TIS11 protein (dTIS11) in Drosophila cells. In this study, we used CecA1 mRNA as a model to investigate the molecular mechanism of dTIS11-mediated mRNA decay. We observed that during the biphasic deadenylation and decay process of this mRNA, dTIS11 enhances deadenylation performed by the CCR4-CAF-NOT complex while the mRNA is still associated with ribosomes. Sequencing of mRNA degradation intermediates revealed that the complete deadenylation of the mRNA triggers its decapping and decay in both the 5'-3' and the 3'-5' directions. Contrary to the observations made for its mammalian homologs, overexpression of dTIS11 does not promote the localization of ARE-containing mRNAs in P-bodies but rather decreases the accumulation of CecA1 mRNA in these structures by enhancing the degradation process. Therefore, our results suggest that proteins of the TIS11 family may have acquired additional functions in the course of evolution from invertebrates to mammals.


Subject(s)
AU Rich Elements/physiology , Drosophila Proteins/metabolism , RNA Stability/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleases/metabolism , Tristetraprolin/metabolism , Animals , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Evolution, Molecular , Humans , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleases/genetics , Tristetraprolin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...