Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 111(9): 1672-1686, 2023 09.
Article in English | MEDLINE | ID: mdl-37204210

ABSTRACT

Achilles tendon, which connects the calf muscles to heel, is the strongest tendon in the body. Despite its strength, it is more prone to injury due to its limited blood supply. Tendon-related injuries are more common in sportspersons, people with labor-intensive work and the aged community. The currently available treatment mode is surgery which is expensive with chances of re-injury. Present study made an attempt to fabricate a tissue-engineered tendon product using decellularized tendon (DT) seeded with stem cells and bioactive components of Tinospora cordifolia extract (TCE). The bare DT tissue scaffold/substitute may also serve as a drug delivery platform for growth factors and cells with a new approach to promote tissue regeneration in clinical applications. DT construct showed good regenerative potential and easily promoted new tissue formation. Decellularization of the tendon was carried out by chemical method using tri (n-butyl) phosphate (TnBP). DT was physicochemically characterized by contact angle measurement, thermal gravimetric analysis (TGA), and mechanical testing. Rabbit adipose derived mesenchymal stem cells (RADMSCs) were isolated and phenotypically characterized by flow cytometry analysis, tri lineage differentiation, and so forth. Further, stem cell seeded DT scaffolds were prepared and found to be non-toxic by cytotoxicity, cell adhesion by scanning electron microscope (SEM) analysis, cell viability by live dead assays, and so forth. The findings of this study yield valid proof for the employability of cell-seeded DT construct as a natural scaffold in repairing injured tendons-the toughest chords of the skeleton. This is a cost effective method for the replacement of injured/damaged tendons for athletes, people in labor-intensive occupations, the elderly population, and so forth-a boon towards the repair of the tendon in damage/injury.


Subject(s)
Achilles Tendon , Tendon Injuries , Aged , Animals , Humans , Rabbits , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Extracellular Matrix/metabolism , Stem Cells , Achilles Tendon/injuries , Tendon Injuries/metabolism
2.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33737496

ABSTRACT

Current treatment systems for tendon injuries are very few and do not ensure complete cure. This is a serious health concern for sports persons and the aged population. It is known that the nano- or microsized particles of natural products such as jeera/cumin seed (Cuminum cyminum) has been used traditionally as a home remedy for the treatment of tendon injuries. Nevertheless, these particles are likely to perform better due to their smaller size, increased absorption and local delivery in conjunction with nanotechnology. In this context, the major objective of this study was to synthesize silver-capped nanoparticles using aqueous extract of Cuminum cyminum (CCE) and to assess their in vitro non-cytotoxic effect with the perspective of clinical application to enhance tendon tissue regeneration. The presence of phytochemicals in CCE was studied by qualitative and quantitative methods. Cuminum cyminum nanoparticles (CCNP) were synthesized by the bioreduction method using silver nitrate and the particles were characterized by X-ray diffraction analysis (XRD), Fourier Transform Infra Red Spectroscopy (FTIR), Zeta potential measurement and scanning electron microscopy (SEM). The antioxidant effect of the particles was studied using total antioxidant activity and reducing power assay. Simultaneously, primary Tenocytes were isolated from rabbit Achilles tendon by collagenase and dispase digestion/treatment and characterized for Type 1 collagen. Further, in vitro non-cytotoxicity of the CCNP in direct contact with L929 mouse fibroblast cells and primary Tenocytes, respectively, was evaluated by MTT assay. Physico-chemical characterizations confirmed the formation and stability of the nanosize of CCNP with antioxidant property. Again, MTT assay confirmed the non-cytotoxicity of CCNP with L929 fibroblasts and primary Tenocytes. CCNP may be attributed as an ideal candidate for therapeutic application towards a faster restoration of worn-out/injured tendon tissue confronted by the geriatric and athlete communities.


Subject(s)
Cuminum/chemistry , Metal Nanoparticles/chemistry , Tenocytes/drug effects , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Dynamic Light Scattering , Fibroblasts/drug effects , Green Chemistry Technology , Metal Nanoparticles/therapeutic use , Mice , Plant Extracts/chemistry , Rabbits , Seeds/chemistry , Silver , Tenocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...