Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 36(3-4): 108-132, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35193946

ABSTRACT

With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.


Subject(s)
Protein Biosynthesis , Viruses , Animals , Host-Pathogen Interactions/genetics , RNA Stability/genetics , Ribosomes/genetics , Viruses/genetics , Viruses/metabolism
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725147

ABSTRACT

In addition to being required for protein synthesis, ribosomes and ribosomal proteins (RPs) also regulate messenger RNA translation in uninfected and virus-infected cells. By individually depleting 85 RPs using RNA interference, we found that overall protein synthesis in uninfected primary fibroblasts was more sensitive to RP depletion than those infected with herpes simplex virus-1 (HSV-1). Although representative RP depletion (uL3, uS4, uL5) inhibited protein synthesis in cells infected with two different DNA viruses (human cytomegalovirus, vaccinia virus), HSV-1-infected cell protein synthesis unexpectedly endured and required a single virus-encoded gene product, VP22. During individual RP insufficiency, VP22-expressing HSV-1 replicated better than a VP22-deficient variant. Furthermore, VP22 promotes polysome accumulation in virus-infected cells when uL3 or ribosome availability is limiting and cosediments with initiating and elongating ribosomes in infected and uninfected cells. This identifies VP22 as a virus-encoded, ribosome-associated protein that compensates for RP insufficiency to support viral protein synthesis and replication. Moreover, it reveals an unanticipated class of virus-encoded, ribosome-associated effectors that reduce the dependence of protein synthesis upon host RPs and broadly support translation during physiological stress such as infection.


Subject(s)
Fibroblasts/metabolism , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions , Ribosomal Proteins/metabolism , Viral Structural Proteins/physiology , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Biosynthesis , Vero Cells
3.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34168039

ABSTRACT

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Subject(s)
Coronavirus OC43, Human/physiology , RNA Processing, Post-Transcriptional/genetics , SARS-CoV-2/physiology , Virus Replication/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Humans , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Nucleocapsid Proteins , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Virus Replication/drug effects
4.
J Virol ; 92(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30282708

ABSTRACT

By sensing fundamental parameters, including nutrient availability, activated mechanistic target of rapamycin complex 1 (mTORC1) suppresses catabolic outcomes and promotes anabolic processes needed for herpes simplex virus 1 (HSV-1) productive growth. While the virus-encoded Us3 Ser/Thr kinase is required to activate mTORC1, whether stress associated with amino acid insufficiency impacts mTORC1 activation in infected cells and virus reproduction was unknown. In contrast to uninfected cells, where amino acid withdrawal inhibits mTORC1 activation, we demonstrate that mTORC1 activity is sustained in HSV-1-infected cells during amino acid insufficiency. We show that in the absence of Us3, the insensitivity of mTORC1 to amino acid withdrawal in infected cells was dependent on the host kinase Akt and establish a role for the HSV-1 UL46 gene product, which stimulates phosphatidylinositol (PI) 3-kinase signaling. Significantly, virus reproduction during amino acid insufficiency was stimulated by the viral UL46 gene product. By synergizing with Us3, UL46 reprograms mTORC1 such that it is insensitive to amino acid withdrawal and supports sustained mTORC1 activation and virus reproduction during amino acid insufficiency. This identifies an unexpected function for UL46 in supporting virus reproduction during physiological stress and identifies a new class of virus-encoded mTORC1 regulators that selectively uncouple mTORC1 activation from amino acid sufficiency.IMPORTANCE Mechanistic target of rapamycin complex 1 (mTORC1) is a multisubunit cellular kinase that coordinates protein synthesis with changing amino acid levels. During amino acid insufficiency, mTORC1 is repressed in uninfected cells, dampening protein synthesis and potentially restricting virus reproduction. Here, we establish that HSV-1 alters the responsiveness of mTORC1 to metabolic stress resulting from amino acid insufficiency. Unlike in uninfected cells, mTORC1 remains activated in HSV-1-infected cells deprived of amino acids. Synergistic action of the HSV-1 UL46 gene product, which stimulates PI 3-kinase, and the Us3 kinase supports virus reproduction during amino acid withdrawal. These results define how HSV-1, a medically important human pathogen associated with a range of diseases, uncouples mTORC1 activation from amino acid availability. Furthermore, they help explain how the virus reproduces during physiological stress. Reproduction triggered by physiological stress is characteristic of herpesvirus infections, where lifelong latency is punctuated by episodic reactivation events.


Subject(s)
Amino Acids/deficiency , Antigens, Viral/metabolism , Herpesvirus 1, Human/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Chlorocebus aethiops , Gene Expression Regulation, Viral , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Vero Cells , Virus Replication
5.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28468873

ABSTRACT

Cellular stress responses to energy insufficiency can impact virus reproduction. In particular, activation of the host AMP-activated protein kinase (AMPK) by low energy could limit protein synthesis by inhibiting mTORC1. Although many herpesviruses, including herpes simplex virus 1 (HSV-1), stimulate mTORC1, how HSV-1-infected cells respond to energy availability, a physiological indicator regulating mTORC1, has not been investigated. In addition, the impact of low-energy stress on productive HSV-1 growth and viral genetic determinants potentially enabling replication under physiological stress remains undefined. Here, we demonstrate that mTORC1 activity in HSV-1-infected cells is largely insensitive to stress induced by simulated energy insufficiency. Furthermore, resistance of mTORC1 activity to low-energy-induced stress, while not significantly influenced by the HSV-1 UL46-encoded phosphatidylinositol 3-kinase (PI3K)-Akt activator, was dependent upon the Ser/Thr kinase activity of Us3. A Us3-deficient virus was hypersensitive to low-energy-induced stress as infected cell protein synthesis and productive replication were reduced compared to levels in cells infected with a Us3-expressing virus. Although Us3 did not detectably prevent energy stress-induced AMPK activation, it enforced mTORC1 activation despite the presence of activated AMPK. In the absence of applied low-energy stress, AMPK activity in infected cells was restricted in a Us3-dependent manner. This establishes that the Us3 kinase not only activated mTORC1 but also enabled sustained mTORC1 signaling during simulated energy insufficiency that would otherwise restrict protein synthesis and virus replication. Moreover, it identifies the alphaherpesvirus-specific Us3 kinase as an mTORC1 activator that subverts the host cell energy-sensing program to support viral productive growth irrespective of physiological stress.IMPORTANCE Like all viruses, herpes simplex virus type 1 (HSV-1) reproduction relies upon numerous host energy-intensive processes, the most demanding of which is protein synthesis. In response to low energy, the cellular AMP-activated protein kinase (AMPK) triggers a physiological stress response that antagonizes mTORC1, a multisubunit host kinase that controls protein synthesis. This could restrict virus protein production and growth. Here, we establish that the HSV-1 Us3 protein kinase subverts the normal response to low-energy-induced stress. While Us3 does not prevent AMPK activation by low energy, it enforces mTORC1 activation and overrides a physiological response that couples energy availability and protein synthesis. These results help explain how reproduction of HSV-1, a ubiquitous, medically significant human pathogen causing a spectrum of diseases ranging from the benign to the life threatening, occurs during physiological stress. This is important because HSV-1 reproduction triggered by physiological stress is characteristic of reactivation of lifelong latent infections.


Subject(s)
Herpesvirus 1, Human/physiology , Host-Pathogen Interactions , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Virus Replication , Cells, Cultured , Humans , Mechanistic Target of Rapamycin Complex 1
6.
Viruses ; 7(5): 2428-49, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25984715

ABSTRACT

The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.


Subject(s)
Adenoviridae/physiology , Adenovirus E4 Proteins/metabolism , Gene Expression Regulation , Host-Pathogen Interactions , Protein Multimerization , Cell Line , Gene Expression Profiling , Humans , Immune Evasion , Microarray Analysis
7.
Virology ; 422(2): 317-25, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22123502

ABSTRACT

The adenovirus E4-ORF3 protein promotes viral replication by relocalizing cellular proteins into nuclear track structures, interfering with potential anti-viral activities. E4-ORF3 targets transcriptional intermediary factor 1 alpha (TIF1α), but not homologous TIF1ß. Here, we introduce TIF1γ as a novel E4-ORF3-interacting partner. E4-ORF3 relocalizes endogenous TIF1γ in virus-infected cells in vivo and binds to TIF1γ in vitro. We used the homologous nature, yet differing binding capabilities, of these proteins to study how E4-ORF3 targets proteins for track localization. We mapped the ability of E4-ORF3 to interact with specific TIF1 subdomains, demonstrating that E4-ORF3 interacts with the Coiled-Coil domains of TIF1α, TIF1ß, and TIF1γ, and that the C-terminal half of TIF1ß interferes with this interaction. The results of E4-ORF3-directed TIF1 protein relocalization assays performed in vivo were verified using coimmunoprecipitation assays in vitro. These results suggest that E4-ORF3 targets proteins for relocalization through a loosely homologous sequence dependent on accessibility.


Subject(s)
Adenoviridae/metabolism , Nuclear Proteins/metabolism , Nuclear Receptor Coactivator 2/metabolism , Transcription Factors/metabolism , Adenoviridae/genetics , Gene Expression Regulation , HeLa Cells , Humans , Nuclear Proteins/genetics , Nuclear Receptor Coactivator 2/genetics , Protein Conformation , Protein Structure, Tertiary , Protein Transport , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...