Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Allergy ; 47(9): 1159-1169, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28626990

ABSTRACT

BACKGROUND: Asthma is a chronic inflammatory airway disease, associated with episodes of exacerbations. Therapy with inhaled corticosteroids (ICS) targets airway inflammation, which aims to maintain and restore asthma control. Clinical features are only modestly associated with airways inflammation. Therefore, we hypothesized that exhaled volatile metabolites identify longitudinal changes between clinically stable episodes and loss of asthma control. OBJECTIVES: To determine whether exhaled volatile organic compounds (VOCs) as measured by gas-chromatography/mass-spectrometry (GC/MS) and electronic nose (eNose) technology discriminate between clinically stable and unstable episodes of asthma. METHODS: Twenty-three patients with (partly) controlled mild to moderate persistent asthma using ICS were included in this prospective steroid withdrawal study. Exhaled metabolites were measured at baseline, during loss of control and after recovery. Standardized sampling of exhaled air was performed, after which samples were analysed by GC/MS and eNose. Univariate analysis of covariance (ANCOVA), followed by multivariate principal component analysis (PCA) was used to reduce data dimensionality. Next paired t tests were utilized to analyse within-subject breath profile differences at the different time-points. Finally, associations between exhaled metabolites and sputum inflammation markers were examined. RESULTS: Breath profiles by eNose showed 95% (21/22) correct classification for baseline vs loss of control and 86% (19/22) for loss of control vs recovery. Breath profiles using GC/MS showed accuracies of 68% (14/22) and 77% (17/22) for baseline vs loss of control and loss of control vs recovery, respectively. Significant associations between exhaled metabolites captured by GC/MS and sputum eosinophils were found (Pearson r≥.46, P<.01). CONCLUSIONS & CLINICAL RELEVANCE: Loss of asthma control can be discriminated from clinically stable episodes by longitudinal monitoring of exhaled metabolites measured by GC/MS and particularly eNose. Part of the uncovered biomarkers was associated with sputum eosinophils. These findings provide proof of principle for monitoring and identification of loss of asthma control by breathomics.


Subject(s)
Asthma/metabolism , Asthma/physiopathology , Biomarkers , Exhalation , Volatile Organic Compounds/metabolism , Adult , Asthma/diagnosis , Breath Tests , Electronic Nose , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Nitric Oxide/metabolism , Prospective Studies , Respiratory Function Tests , Sputum/cytology , Sputum/metabolism , Symptom Assessment , Young Adult
2.
PLoS One ; 11(5): e0154768, 2016.
Article in English | MEDLINE | ID: mdl-27192218

ABSTRACT

Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen's rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (Ta). Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae), with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae) likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas). We found that hornbills dissipate heat via the beak at air temperatures between 30.7°C and 41.4°C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within ~10°C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at Ta > 30.7°C compared to Ta < 30.7°C and at its peak dissipated 25.1 W m(-2). Maximum heat flux rate across the beak of toucans under comparable convective conditions was calculated to be as high as 61.4 W m(-2). The threshold air temperature at which toucans vasodilated their beak was lower than that of the hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting) thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important mechanism for animals inhabiting humid regions, such as toucans, and less critical for animals residing in more arid conditions, such as Southern Yellow-billed Hornbills. Alternatively, differences in beak morphology and hardness enforced by different diets may affect the capacity of birds to use the beak for non-evaporative heat loss.


Subject(s)
Acclimatization , Beak/physiology , Birds/physiology , Body Temperature Regulation , Convection , Animals , Desert Climate , Respiration , Temperature
3.
Microb Ecol ; 69(2): 245-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25301499

ABSTRACT

As part of a larger investigation, the effect of apex predation on estuarine bacterial community structure, through trophic cascading, was investigated using experimental in situ mesocosms. Through either the removal (filtration) or addition of specific size classes of planktonic groups, four different trophic scenarios were established using estuarine water and its associated plankton. One such treatment represented a "natural" scenario in which stable apex predatory pressure was qualified. Water samples were collected over time from each of the treatments for bacterial community evaluation. These samples were assessed through pyrosequencing of the variable regions 4 and 5 of the bacterial 16S rRNA gene and analysed at the species operational taxonomic unit (OTU) level using a community procedure. The blue-green group dominated the samples, followed by Proteobacteria and Bacteroidetes. Samples were the most similar among treatments at the commencement of the experiment. While the bacterial communities sampled within each treatment changed over time, the deviation from initial appeared to be linked to the treatment trophic scenarios. The least temporal deviation-from-initial in bacterial community was found within the stable apex predatory pressure treatment. These findings are consistent with trophic cascade theory, whereby predators mediate interactions at multiple lower trophic levels with consequent repercussions for diversity.


Subject(s)
Bacteroidetes/classification , Cyanobacteria/classification , Food Chain , Proteobacteria/classification , Zooplankton , Animals , Bacteroidetes/isolation & purification , Biomass , Computational Biology , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Estuaries , Multivariate Analysis , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
J Breath Res ; 7(1): 016002, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23257711

ABSTRACT

Many (multi-centre) breath-analysis studies require transport and storage of samples. We aimed to test the effect of transportation and storage using sorbent tubes of exhaled breath samples for diagnostic accuracy of eNose and GC-MS analysis. As a reference standard for diagnostic accuracy, breath samples of asthmatic patients and healthy controls were analysed by three eNose devices. Samples were analysed by GC-MS and eNose after 1, 7 and 14 days of transportation and storage using sorbent tubes. The diagnostic accuracy for eNose and GC-MS after storage was compared to the reference standard. As a validation, the stability was assessed of 15 compounds known to be related to asthma, abundant in breath or related to sampling and analysis. The reference test discriminated asthma and healthy controls with a median AUC (range) of 0.77 (0.72-0.76). Similar accuracies were achieved at t1 (AUC eNose 0.78; GC-MS 0.84), t7 (AUC eNose 0.76; GC-MS 0.79) and t14 (AUC eNose 0.83; GC-MS 0.84). The GC-MS analysis of compounds showed an adequate stability for all 15 compounds during the 14 day period. Short-term transportation and storage using sorbent tubes of breath samples does not influence the diagnostic accuracy for discrimination between asthma and health by eNose and GC-MS.


Subject(s)
Breath Tests/instrumentation , Specimen Handling , Adult , Asthma/metabolism , Case-Control Studies , Cross-Sectional Studies , Exhalation , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Specimen Handling/instrumentation , Volatile Organic Compounds/metabolism
5.
Eur Respir J ; 38(6): 1301-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21700610

ABSTRACT

Eosinophilic inflammation in chronic obstructive pulmonary disease (COPD) is predictive for responses to inhaled steroids. We hypothesised that the inflammatory subtype in mild and moderate COPD can be assessed by exhaled breath metabolomics. Exhaled compounds were analysed using gas chromatography and mass spectrometry (GC-MS) and electronic nose (eNose) in 28 COPD patients (12/16 Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I/II, respectively). Differential cell counts, eosinophil cationic protein (ECP) and myeloperoxidase (MPO) were measured in induced sputum. Relationships between exhaled compounds, eNose breathprints and sputum inflammatory markers were analysed and receiver operating characteristic (ROC) curves were constructed. Exhaled compounds were highly associated with sputum cell counts (eight compounds with eosinophils, 17 with neutrophils; p < 0.01). Only one compound (alkylated benzene) overlapped between eosinophilic and neutrophilic profiles. GC-MS and eNose breathprints were associated with markers of inflammatory activity in GOLD stage I (ECP: 19 compounds, p < 0.01; eNose breathprint r = 0.84, p = 0.002) (MPO: four compounds, p < 0.01; eNose r = 0.72, p = 0.008). ROC analysis for eNose showed high sensitivity and specificity for inflammatory activity in mild COPD (ECP: area under the curve (AUC) 1.00; MPO: AUC 0.96) but not for moderate COPD. Exhaled molecular profiles are closely associated with the type of inflammatory cell and their activation status in mild and moderate COPD. This suggests that breath analysis may be used for assessment and monitoring of airway inflammation in COPD.


Subject(s)
Inflammation/diagnosis , Metabolomics , Pulmonary Disease, Chronic Obstructive/diagnosis , Aged , Asthma/diagnosis , Biomarkers/analysis , Breath Tests/methods , Cell Count , Eosinophil Cationic Protein/analysis , Exhalation , Female , Humans , Inflammation/metabolism , Male , Middle Aged , Peroxidase/analysis , Pulmonary Disease, Chronic Obstructive/metabolism , ROC Curve , Respiratory Function Tests , Sensitivity and Specificity , Severity of Illness Index , Sputum/chemistry
6.
Phys Rev Lett ; 89(16): 167601, 2002 Oct 14.
Article in English | MEDLINE | ID: mdl-12398755

ABSTRACT

We present a detailed study of the electron emission from a thin MgO(100) film on a Mo substrate, bombarded with slow He+, Ne+, and Ar+ ions. Neither the high absolute number of emitted electrons per incoming ion nor the electron spectra can be due to Auger neutralization of the incoming ions at the MgO surface alone. Therefore, an additional mechanism is proposed: holes created in the MgO film are transported to the MgO-substrate interface where they give rise to an Auger neutralization process involving two electrons from the metal substrate conduction band.

SELECTION OF CITATIONS
SEARCH DETAIL
...