Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 8173, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589562

ABSTRACT

The persecutory delusion is the most common symptom of psychosis, yet its underlying neurobiological mechanisms are poorly understood. Prior studies have suggested that abnormalities in medial temporal lobe-dependent associative learning may contribute to this symptom. In the current study, this hypothesis was tested in a non-clinical sample of young adults without histories of psychiatric treatment (n = 64), who underwent classical Pavlovian fear conditioning while fMRI data were collected. During the fear conditioning procedure, participants viewed images of faces which were paired (the CS+) or not paired (the CS-) with an aversive stimulus (a mild electrical shock). Fear conditioning-related neural responses were measured in two medial temporal lobe regions, the amygdala and hippocampus, and in other closely connected brain regions of the salience and default networks. The participants without persecutory beliefs (n = 43) showed greater responses to the CS- compared to the CS+ in the right amygdala and hippocampus, while the participants with persecutory beliefs (n = 21) failed to exhibit this response. These between-group differences were not accounted for by symptoms of depression, anxiety or a psychosis risk syndrome. However, the severity of subclinical psychotic symptoms overall was correlated with the level of this aberrant response in the amygdala (p = .013) and hippocampus (p = .033). Thus, these findings provide evidence for a disruption of medial temporal lobe-dependent associative learning in young people with subclinical psychotic symptoms, specifically persecutory thinking.


Subject(s)
Amygdala , Fear , Young Adult , Humans , Adolescent , Fear/physiology , Amygdala/diagnostic imaging , Amygdala/physiology , Conditioning, Classical/physiology , Brain , Hippocampus/diagnostic imaging , Hippocampus/physiology , Magnetic Resonance Imaging
3.
J Neurosci ; 42(7): 1292-1302, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34921048

ABSTRACT

Response nonlinearities are ubiquitous throughout the brain, especially within sensory cortices where changes in stimulus intensity typically produce compressed responses. Although this relationship is well established in electrophysiological measurements, it remains controversial whether the same nonlinearities hold for population-based measurements obtained with human fMRI. We propose that these purported disparities are not contingent on measurement type and are instead largely dependent on the visual system state at the time of interrogation. We show that deploying a contrast adaptation paradigm permits reliable measurements of saturating sigmoidal contrast response functions (10 participants, 7 female). When not controlling the adaptation state, our results coincide with previous fMRI studies, yielding nonsaturating, largely linear contrast responses. These findings highlight the important role of adaptation in manifesting measurable nonlinear responses within human visual cortex, reconciling discrepancies reported in vision neuroscience, re-establishing the qualitative relationship between stimulus intensity and response across different neural measures and the concerted study of cortical gain control.SIGNIFICANCE STATEMENT Nonlinear stimulus-response relationships govern many essential brain functions, ranging from the sensory to cognitive level. Certain core response properties previously shown to be nonlinear with nonhuman electrophysiology recordings have yet to be reliably measured with human neuroimaging, prompting uncertainty and reconsideration. The results of this study stand to reconcile these incongruencies in the vision neurosciences, demonstrating the profound impact adaptation can have on brain activation throughout the early visual cortex. Moving forward, these findings facilitate the study of modulatory influences on sensory processing (i.e., arousal and attention) and help establish a closer link between neural recordings in animals and hemodynamic measurements from human fMRI, resuming a concerted effort to understand operations in the mammalian cortex.


Subject(s)
Adaptation, Physiological/physiology , Contrast Sensitivity/physiology , Visual Cortex/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation
4.
PeerJ ; 8: e8918, 2020.
Article in English | MEDLINE | ID: mdl-32351782

ABSTRACT

Lightness illusions are often studied under static viewing conditions with figures varying in geometric design, containing different types of perceptual grouping and figure-ground cues. A few studies have explored the perception of lightness induction while modulating lightness illusions continuously in time, where changes in perceived lightness are often linked to the temporal modulation frequency, up to around 2-4 Hz. These findings support the concept of a cut-off frequency for lightness induction. However, another critical change (enhancement) in the magnitude of perceived lightness during slower temporal modulation conditions has not been addressed in previous temporal modulation studies. Moreover, it remains unclear whether this critical change applies to a variety of lightness illusion stimuli, and the degree to which different stimulus configurations can demonstrate enhanced lightness induction in low modulation frequencies. Therefore, we measured lightness induction strength by having participants cancel out any perceived modulation in lightness detected over time within a central target region, while the surrounding context, which ultimately drives the lightness illusion, was viewed in a static state or modulated continuously in time over a low frequency range (0.25-2 Hz). In general, lightness induction decreased as temporal modulation frequency was increased, with the strongest perceived lightness induction occurring at lower modulation frequencies for visual illusions with strong grouping and figure-ground cues. When compared to static viewing conditions, we found that slow continuous surround modulation induces a strong and significant increase in perceived lightness for multiple types of lightness induction stimuli. Stimuli with perceptually ambiguous grouping and figure-ground cues showed weaker effects of slow modulation lightness enhancement. Our results demonstrate that, in addition to the existence of a cut-off frequency, an additional critical temporal modulation frequency of lightness induction exists (0.25-0.5 Hz), which instead maximally enhances lightness induction and seems to be contingent upon the prevalence of figure-ground and grouping organization.

5.
J Neurophysiol ; 123(2): 773-785, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31940228

ABSTRACT

Neurons within early visual cortex are selective for basic image statistics, including spatial frequency. However, these neurons are thought to act as band-pass filters, with the window of spatial frequency sensitivity varying across the visual field and across visual areas. Although a handful of previous functional (f)MRI studies have examined human spatial frequency sensitivity using conventional designs and analysis methods, these measurements are time consuming and fail to capture the precision of spatial frequency tuning (bandwidth). In this study, we introduce a model-driven approach to fMRI analyses that allows for fast and efficient estimation of population spatial frequency tuning (pSFT) for individual voxels. Blood oxygen level-dependent (BOLD) responses within early visual cortex were acquired while subjects viewed a series of full-field stimuli that swept through a large range of spatial frequency content. Each stimulus was generated by band-pass filtering white noise with a central frequency that changed periodically between a minimum of 0.5 cycles/degree (cpd) and a maximum of 12 cpd. To estimate the underlying frequency tuning of each voxel, we assumed a log-Gaussian pSFT and optimized the parameters of this function by comparing our model output against the measured BOLD time series. Consistent with previous studies, our results show that an increase in eccentricity within each visual area is accompanied by a drop in the peak spatial frequency of the pSFT. Moreover, we found that pSFT bandwidth depends on eccentricity and is correlated with the pSFT peak; populations with lower peaks possess broader bandwidths in logarithmic scale, whereas in linear scale this relationship is reversed.NEW & NOTEWORTHY Spatial frequency selectivity is a hallmark property of early visuocortical neurons, and mapping these sensitivities gives us crucial insight into the hierarchical organization of information within visual areas. Due to technical obstacles, we lack a comprehensive picture of the properties of this sensitivity in humans. Here, we introduce a new method, coined population spatial frequency tuning mapping, which circumvents the limitations of the conventional neuroimaging methods, yielding a fuller visuocortical map of spatial frequency sensitivity.


Subject(s)
Brain Mapping/methods , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Models, Theoretical , Visual Cortex/diagnostic imaging
6.
J Neurophysiol ; 123(2): 473-483, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31825699

ABSTRACT

Our visual system is tasked with transforming variations in light within our environment into a coherent percept, typically described using properties such as luminance and contrast. Models of vision often downplay the importance of luminance in shaping cortical responses, instead prioritizing representations that do not covary with overall luminance (i.e., contrast), and yet visuocortical response properties that may reflect luminance encoding remain poorly understood. In this study, we examined whether well-established visuocortical response properties may also reflect luminance encoding, challenging the idea that luminance information itself plays no significant role in supporting visual perception. To do so, we measured functional activity in human visual cortex when presenting stimuli varying in contrast and mean luminance, and found that luminance response functions are strongly contrast dependent between 50 and 250 cd/m2, confirmed with a subsequent experiment. High-contrast stimuli produced linearly increasing responses as luminance increased logarithmically for all early visual areas, whereas low-contrast stimuli produced either flat (V1) or assorted positive linear (V2 and V3) response profiles. These results reveal that the mean luminance information of a visual signal persists within visuocortical representations, potentially reflecting an inherent imbalance of excitatory and inhibitory components that can be either contrast dependent (V1 and V2) or contrast invariant (V3). The role of luminance should be considered when the aim is to drive potent visually evoked responses and when activity is compared across studies. More broadly, overall luminance should be weighed heavily as a core feature of the visual system and should play a significant role in cortical models of vision.NEW & NOTEWORTHY This neuroimaging study investigates the influence of overall luminance on population activity in human visual cortex. We discovered that the response to a particular stimulus contrast level is reliant, in part, on the mean luminance of a signal, revealing that the mean luminance information of our environment is represented within the visual cortex. The results challenge a long-standing misconception about the role of luminance information in the processing of visual information at the cortical level.


Subject(s)
Contrast Sensitivity/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adolescent , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Visual Cortex/diagnostic imaging , Young Adult
7.
Atten Percept Psychophys ; 81(2): 571-589, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30488190

ABSTRACT

Listeners resolve ambiguities in speech perception using multiple sources, including non-local or distal speech rate (i.e., the speech rate of material surrounding a particular region). The ability to resolve ambiguities is particularly important for the perception of casual, everyday productions, which are often produced using phonetically reduced forms. Here, we examine whether the distal speech rate effect is specific to a lexical class of words and/or to particular lexical or phonological contexts. In Experiment 1, we examined whether distal speech rate influenced perception of phonologically similar content words differing in number of syllables (e.g., form/forum). In Experiment 2, we used both transcription and word-monitoring tasks to examine whether distal speech rate influenced perception of a reduced vowel, causing lexical reorganization (e.g., cease, see us). Distal speech rate influenced perception of lexical content in both experiments. This demonstrates that distal rate influences perception of a lexical class other than function words and affects perception in a variety of phonological and lexical contexts. These results support a view that distal speech rate is a pervasive source of information with far-reaching consequences for perception of lexical content and word segmentation.


Subject(s)
Phonetics , Recognition, Psychology , Speech Perception/physiology , Verbal Behavior , Adolescent , Adult , Female , Humans , Male , Young Adult
8.
Neuroimage ; 100: 395-404, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24954840

ABSTRACT

We established a strategy to perform cross-validation of serial optical coherence scanner imaging (SOCS) and diffusion tensor imaging (DTI) on a postmortem human medulla. Following DTI, the sample was serially scanned by SOCS, which integrates a vibratome slicer and a multi-contrast optical coherence tomography rig for large-scale three-dimensional imaging at microscopic resolution. The DTI dataset was registered to the SOCS space. An average correlation coefficient of 0.9 was found between the co-registered fiber maps constructed by fractional anisotropy and retardance contrasts. Pixelwise comparison of fiber orientations demonstrated good agreement between the DTI and SOCS measures. Details of the comparison were studied in regions exhibiting a variety of fiber organizations. DTI estimated the preferential orientation of small fiber tracts; however, it didn't capture their complex patterns as SOCS did. In terms of resolution and imaging depth, SOCS and DTI complement each other, and open new avenues for cross-modality investigations of the brain.


Subject(s)
Diffusion Tensor Imaging/standards , Medulla Oblongata/cytology , Tomography, Optical Coherence/standards , Diffusion Tensor Imaging/methods , Humans , Male , Middle Aged , Multimodal Imaging/methods , Multimodal Imaging/standards , Nerve Fibers, Myelinated/pathology , Tomography, Optical Coherence/methods
9.
PLoS One ; 8(8): e73372, 2013.
Article in English | MEDLINE | ID: mdl-23977386

ABSTRACT

Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct--either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.


Subject(s)
Cognition , Language , Music , Pitch Perception , Acoustic Stimulation , Auditory Perception , Discrimination, Psychological , Humans , Linear Models , Self Report , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...