Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37390508

ABSTRACT

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Structure-Activity Relationship , 17-Hydroxysteroid Dehydrogenases , Brain/metabolism , Enzyme Inhibitors/chemistry
2.
Toxicol Lett ; 339: 12-19, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33359020

ABSTRACT

Mitochondrial enzymes are targets of newly synthesized drugs being tested for the treatment of neurodegenerative disorders, such as Alzheimer's disease (AD). The enzyme 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) is a multifunctional mitochondrial protein that is thought to play a role in the pathophysiology of AD and is one of the targets of new potential AD drugs. The in vitro effects of frentizole, riluzole, AG18051, and 42 novel modulators of HSD10 (potential AD drugs) on citrate synthase (CS) activity, monoamine oxidase (MAO) activity, complex I- or complex II-linked mitochondrial respiratory rate, and complex I activity were measured in isolated pig brain mitochondria. Based on their minimal inhibitory effects on the respiratory rate of mitochondria and CS and complex I activity, six novel compounds were selected for further testing. Assuming that inhibition of MAO-B could be a desirable effect of AD drugs, only AG18051 and one new compound met the criteria for MAO-B inhibition with minimal drug-induced effects on mitochondrial respiration. In conclusion, our in vitro screening of mitochondrial effect of novel potential AD drugs has enabled the selection of the most promising molecules for further testing that are relatively safe in terms of drug-induced mitochondrial toxicity.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/toxicity , Cell Respiration/drug effects , Enzyme Inhibitors/toxicity , Enzyme Inhibitors/therapeutic use , Mitochondria/drug effects , Neurodegenerative Diseases/drug therapy , Animals , Humans , Models, Animal , Swine
3.
J Neurochem ; 155(3): 231-249, 2020 11.
Article in English | MEDLINE | ID: mdl-32306391

ABSTRACT

17ß-hydroxysteroid dehydrogenase (17ß-HSD10) is a multifunctional human enzyme with important roles both as a structural component and also as a catalyst of many metabolic pathways. This mitochondrial enzyme has important functions in the metabolism, development and aging of the neural system, where it is involved in the homeostasis of neurosteroids, especially in regard to estradiol, changes in which make it an essential part of neurodegenerative pathology. These roles therefore, indicate that 17ß-HSD10 may be a possible druggable target for neurodegenerative diseases including Alzheimer's disease (AD), and in hormone-dependent cancer. The objective of this review was to provide a summary about physiological functions and pathological roles of 17ß-HSD10 and the modulators of its activity.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Health Status , Mitochondria/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Mitochondria/genetics , Mutation/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Protein Structure, Secondary
4.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192199

ABSTRACT

Human 17ß-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 µM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17ß-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/antagonists & inhibitors , Benzothiazoles/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Urea/chemistry , Urea/pharmacology , 3-Hydroxyacyl CoA Dehydrogenases/chemistry , Alzheimer Disease/drug therapy , Enzyme Activation , Humans , Kinetics , Molecular Structure , Recombinant Proteins , Structure-Activity Relationship
5.
Molecules ; 24(15)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362457

ABSTRACT

: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17ß-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17ß-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Benzothiazoles/chemistry , Urea/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Cell Line , Dose-Response Relationship, Drug , Drug Design , Humans , Mitochondria/metabolism , Molecular Structure , Structure-Activity Relationship
6.
J Enzyme Inhib Med Chem ; 33(1): 665-670, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29536773

ABSTRACT

Several neurodegenerative disorders including Alzheimer's disease (AD) have been connected with deregulation of casein kinase 1 (CK1) activity. Inhibition of CK1 therefore presents a potential therapeutic strategy against such pathologies. Recently, novel class of CK1-specific inhibitors with N-(benzo[d]thiazol-2-yl)-2-phenylacetamide structural scaffold has been discovered. 1-(benzo[d]thiazol-2-yl)-3-phenylureas, on the other hand, are known inhibitors amyloid-beta binding alcohol dehydrogenase (ABAD), an enzyme also involved in pathophysiology of AD. Based on their tight structural similarity, we decided to evaluate series of previously published benzothiazolylphenylureas, originally designed as ABAD inhibitors, for their inhibitory activity towards CK1. Several compounds were found to be submicromolar CK1 inhibitors. Moreover, two compounds were found to inhibit both, ABAD and CK1. Such dual-activity could be of advantage for AD treatment, as it would simultaneously target two distinct pathological processes involved in disease's progression. Based on PAMPA testing both compounds were suggested to permeate the blood-brain barrier, which makes them, together with their unique dual activity, interesting lead compounds for further development.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/metabolism , Casein Kinase I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Neurodegenerative Diseases/drug therapy , Phenylurea Compounds/pharmacology , Casein Kinase I/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Neurodegenerative Diseases/metabolism , Phenylurea Compounds/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...