Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e21850, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027943

ABSTRACT

Herein, simple, low-cost, and room-temperature synthesis of beta-cyclodextrin (ß-CD) stabilized zinc sulfide nanoparticle (ZnS NP) through the chemical precipitation method has been reported for cation exchange reaction (CER) based colorimetric sensing of Pb2+, Cu2+, and Hg2+. Formation of ß-CD stabilized ZnS NPs (ZnS@ß-CD) was verified by physicochemical characterization techniques such as XRD, XPS, FE-SEM, and TEM. ZnS@ß-CD NPs showed color change selectively for the metal ions Pb2⁺, Cu2⁺, and Hg2⁺ among the various metal ions including Sn2⁺, Cr³âº, Mn2⁺, Fe³âº, Co2⁺, Ni2⁺, and Cd2⁺. The solubility product of reactants and the transformed products are the reason for selective CER of ZnS@ß-CD NPs towards Pb2⁺, Cu2⁺, and Hg2⁺ ions. ZnS@ß-CD NPs dispersion revealed rapid color change from white to orange, black, and bright yellow on the addition of higher concentrations of Pb2⁺, Cu2⁺, and Hg2⁺ respectively. This color change is due to the formation of complete CER-transformed nanostructures such as PbS, CuS, and HgS in higher concentrations (10⁻1- 10⁻³ M) of corresponding metal ions. The partial CER altered products Zn1-x,PbxS, Zn1-xCuxS and Zn1-xHgxS were detected due to the appearance of pale color in the lower metal ions concentrations of 10⁻4 - 10⁻6 M. This CER assisted transformation was also monitored through spectrophotometric methods. Moreover, infrared spectroscopic analysis was used to testify the structure of CER transformed product. The synthesized ZnS@ß-CD NPs act as an efficient CER-based sensor for distinguishing and determining Pb2⁺, Cu2⁺, and Hg2⁺ at different level concentrations in the aqueous solution.

2.
Langmuir ; 39(49): 17688-17699, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38014812

ABSTRACT

Supercapacitors are the best energy storage systems due to their high power density, quick charge/discharge rate, and long-term reliability. In this study, ß-cyclodextrin-stabilized CuO nanoparticles (CuO@ßCD NPs) were synthesized through a simple reduction method and anchored on the surface of MXene nanosheets in three different proportions (1:1, 4:1, and 1:4) to obtain CuO@ßCD/MXene nanocomposites through the wet-impregnation method. The formation of CuO@ßCD NPs and their physicochemical characteristics were verified by XRD, XPS, FE-SEM, and HR-TEM analysis. The actual focus is on the evaluation of the electrochemical performances of CuO@ßCD, MXene, and CuO@ßCD/MXene nanocomposites for supercapacitor applications. The cyclic voltammetry and galvanostatic charge-discharge analysis revealed the pseudocapacitance and an improved specific capacitance of 1693.43 F g-1 at 0.90 A g-1 for the CuO@ßCD/MXene (1:1) nanocomposite. The electrochemical impedance analysis displays superior electrical conductivity with a low charge transfer resistance value on incorporating CuO@ßCD between the MXene layers. Furthermore, the CuO@ßCD/MXene (1:1) nanocomposite exhibited improved long-term cycling stability by retaining 86% of its initial specific capacitance even after the 10,000th cycle at the current density of 4.54 A g-1. Based on the electrochemical performance, the CuO@ßCD/MXene (1:1) nanocomposite proves its suitability as an electrode material for supercapacitor application with long-term cycling stability and rate capability.

3.
RSC Adv ; 13(12): 7766-7779, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36909755

ABSTRACT

A method for synthesizing graphene derivatives from asphaltene is proposed in this work. The graphene derivatives are mainly composed of few-layer graphene-like nano-sheets of randomly distributed heteroatoms; mainly sulfur and nitrogen. The proposed method is based on a thermal treatment in which asphaltene is carbonized in a rotating quartz-tube furnace under an inert atmosphere at a temperature in the range of 400-950 °C. Asphaltenes from different origins were employed to verify the synthesis method. The results indicate that graphene derivatives obtained at high carbonization temperature have similar structural parameters, despite the evident differences in parent asphaltenes structures and compositions. The transformation of asphaltene to graphene derivatives mainly occurred due to three factors: the reduction in the average number of aromatic layers (n), the expansion in aromatic sheet diameter (L a), and the elimination of alkyl side chains. The reduction in the number of aromatic sheets per stack is primarily ascribed to thermal exfoliation, while the increase in the aromatic sheet diameter is attributed to secondary reactions in the aromatic core of asphaltene. The elimination of side chains, on the other hand, is mainly credited to thermal cracking. The quantification of defect density (L D) in the graphene derivatives suggests an association between defects and heteroatoms presence.

4.
Langmuir ; 39(13): 4756-4765, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36943685

ABSTRACT

Direct methanol fuel cell (DMFC) technology has grabbed much attention from researchers worldwide in the realm of green and renewable energy-generating technologies. Practical applications of DMFCs are marked by the development of highly active, efficient, economical, and long-lasting anode catalysts. Layered double hydroxide (LDH) nanohybrids are found to be efficient electrode materials for methanol oxidation. In this study, we synthesized NiCu-LDH/MXene nanocomposites (NCMs) and investigated their electrochemical performance for methanol oxidation. The formation of NCM was verified through field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET), and X-ray photoemission spectroscopy (XPS) analyses. The cyclic voltammetry, chronoamperometry, and electron impedance spectroscopy techniques were carried out to assess the electrocatalytic ability of the methanol oxidation reaction. The incorporation of MXene enhanced the methanol oxidation 2-fold times higher than NiCu-LDH. NCM-45 exhibited high peak current density (86.9 mA cm-2), enhanced electrochemical active surface area (7.625 cm2), and long-term stability (77.8% retention after 500 cycles). The superior performance of NCM can be attributed to the synergistic effect between Ni and Cu and, further, the electronic coupling between LDH and MXene. Based on the results, NCM nanocomposite is an efficient anodic material for the electrocatalytic oxidation of methanol. This study will open the door for the development of various LDH/MXene nanocomposite electrode materials for the application of direct methanol fuel cells.

5.
J Environ Manage ; 280: 111789, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33370668

ABSTRACT

Petroleum refining operations such as hydroprocessing and fluid catalytic cracking (FCC) generate huge quantities of spent catalysts containing toxic and valuable metals (Ni, V, Mo, Co, W, Al, etc.), the management of which is a serious environmental issue. Besides environmental concerns, the different metals present in the spent catalysts are also a valuable commodity to modern industries. Therefore, these spent catalysts also provide an opportunity to use it as a source of value to the refiners. In recent years, a biotechnological based leaching process 'bioleaching' has emerged as a promising eco-friendly technique for the extraction of metals from these refinery spent catalysts. Among various bioleaching agents such as archean, bacterial, or fungi, the process mediated by the fungi (Aspergillus niger, Penicillium simplicissimum, and many others) is gaining attention owing to the high metal extraction ability of the various fungal produced metabolites (organic acids) under moderately acidic conditions. Furthermore, the ability of these fungi to withstand wide process conditions (pH, spent catalyst concentration, substrate types, etc.), high metal toxicity and use of low-cost organic substrate make them an ideal candidate for bioleaching. In this review article, we shed light on the role and mechanisms of fungi involved in extracting different metals from spent hydroprocessing and FCC catalysts. Key process parameters that affect the efficiency of fungal based bioleaching are discussed. The techno-economic challenges associated with the process are elaborated, and the needed future research directions to promote its commercial applications are highlighted. Based on our analysis, it can be argued that the fungi bioleaching has potential, however, some challenges (slower kinetics, and health and safety) should be addressed before the process can be scaled up for the commercial application.


Subject(s)
Metals , Petroleum , Aspergillus niger , Catalysis , Penicillium
6.
RSC Adv ; 10(21): 12308-12317, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-35497617

ABSTRACT

Hierarchical structures of 2D layered Ti3C2T x MXene hold potential for a range of applications. In this study, catalysts comprising few-layered MoS2 with Ti3C2T x have been formulated for hydrodesulfurization (HDS). The support Ti3C2T x was derived from MAX phases (Ti3AlC2) via a liquid-phase exfoliation process, while MoS2 was obtained from synthesized aqueous ammonium tetrathiomolybdate (ATM). Furthermore, a series of catalysts with different architectures was synthesized by confinement of ATM and/or the promoter Ni in Ti3C2T x at different mole ratios, through a thermal conversion process. The synthesized MoS2/Ti3C2T x and Ni-MoS2/Ti3C2T x catalysts were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR) measurements. The number of MoS2 layers formed on the Ti3C2T x support was calculated using Raman spectroscopy. The heterostructured few-layered MoS2/Ti3C2T x catalysts were applied in sulfur removal efficiency experiments involving thiophene. The active MoS2 sites confined by the Ti3C2T x enhanced hydrogen activation by proton saturation, and the electron charge stabilized the sulfur atom to facilitate hydrogenation reactions, leading to predominant formation of C4 hydrocarbons. The Ni-MoS2/Ti3C2T x showed the best activity at a promoter molar ratio of 0.3 when compared to the other catalysts. In particular, it is evident from the results that ATM and Ti3C2T x are potential materials for the in situ fabrication of hierarchical few-layered MoS2/Ti3C2T x catalysts for enhancing hydrodesulfurization activity in clean fuel production.

7.
Langmuir ; 29(50): 15655-63, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24289276

ABSTRACT

One aspect of the attempt to restrain global warming is the reduction of the levels of atmospheric CO2 produced by fossil fuel power systems. This study attempted to develop a method that reduces CO2 emissions by investigating the absorption of CO2 into sterically hindered amine 2-amino-2-methyl-1-propanol (AMP), the acceleration of the absorption rate by using the enzyme carbonic anhydrase (CA), and the conversion of the absorption product to stable carbonates. CO2 absorbed by AMP is converted via a zwitterion mechanism to bicarbonate species; the presence of these anions was confirmed with (1)H and (13)C NMR spectral analysis. The catalytic efficiency (kcat/Km), CO2 absorption capacities, and enthalpy changes (ΔHabs) of aqueous AMP in the presence or absence of CA were found to be 2.61 × 10(6) or 1.35 × 10(2) M(-1) s(-1), 0.97 or 0.96 mol/mol, and -69 or -67 kJ/mol, respectively. The carbonation of AMP-absorbed CO2 was performed by using various Ca(2+) sources, viz., CaCl2 (CAC), Ca(OOCCH3)2 (CAA), and Ca(OOCCH2CH3)2 (CAP), to obtain various polymorphs of CaCO3. The yields of CaCO3 from the Ca(2+) sources were found in the order CAP > CAA > CAC as a result of the effects of the corresponding anions. CAC produces pure rhombohedral calcite, and CAA and CAP produce the unusual phase transformation of calcite to spherical vaterite crystals. Thus, AMP in combination with CAA and CAP can be used as a CO2 absorbent and buffering agent for the sequestration of CO2 in porous CaCO3.

8.
J Phys Chem B ; 117(18): 5683-90, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23621860

ABSTRACT

The rate of carbon dioxide (CO2) absorption by monoethanol amine (MEA), diethanol amine (DEA), N-methyl-2,2'-iminodiethanol (MDEA), and 2-amino-2-methyl 1-propanol (AMP) solutions was found to be enhanced by the addition of bovine carbonic anhydrase (CA), has been investigated using a vapor-liquid equilibrium (VLE) device. The enthalpy (-ΔHabs) of CO2 absorption and the absorption capacities of aqueous amines were measured in the presence and/or absence of CA enzyme via differential reaction calorimeter (DRC). The reaction temperature (ΔT) under adiabatic conditions was determined based on the DRC analysis. Bicarbonate and carbamate species formation mechanisms were elucidated by (1)H and (13)C NMR spectral analysis. The overall CO2 absorption rate (flux) and rate constant (kapp) followed the order MEA > DEA > AMP > MDEA in the absence or presence of CA. Hydration of CO2 by MDEA in the presence of CA directly produced bicarbonate, whereas AMP produced unstable carbamate intermediate, then underwent hydrolytic reaction and converted to bicarbonate. The MDEA > AMP > DEA > MEA reverse ordering of the enhanced CO2 flux and kapp in the presence of CA was due to bicarbonate formation by the tertiary and sterically hindered amines. Thus, CA increased the rate of CO2 absorption by MDEA by a factor of 3 relative to the rate of absorption by MDEA alone. The thermal effects suggested that CA yielded a higher activity at 40 °C.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Animals , Biocatalysis , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Cattle , Thermodynamics
9.
Chemistry ; 18(38): 12028-34, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22888048

ABSTRACT

Bovine carbonic anhydrase (BCA) was covalently immobilized onto OAPS (octa(aminophenyl)silsesquioxane)-functionalized Fe(3)O(4)/SiO(2) nanoparticles by using glutaraldehyde as a spacer. The Fe(3)O(4) nanoparticles were coated with SiO(2), onto which was grafted OAPS, and the product was characterized using SEM, TEM, XRD, IR, X-ray photoelectron spectroscopy (XPS), and magnetometer analysis. The enzymatic activities of the free and Fe(3)O(4)/SiO(2)/OAPS-conjugated BCA (Fe-CA) were investigated by hydrolyzing p-nitrophenylacetate (p-NPA), and hydration and sequestration of CO(2) to CaCO(3). The CO(2) conversion efficiency and reusability of the Fe-CA were studied before and after washing the recovered Fe-CA by applying a magnetic field and quantifying the unreacted Ca(2+) ions by using ion chromatography. After 30 cycles, the Fe-CA displayed strong activity, and the CO(2) capture efficiency was 26-fold higher than that of the free enzyme. Storage stability studies suggested that Fe-CA retained nearly 82 % of its activity after 30 days. Nucleation of the precipitated CaCO(3) was monitored by using polarized light microscopy, which revealed the formation of two phases, calcite and valerite, at pH 10 upon addition of serine. The magnetic nanobiocatalyst was shown to be an excellent reusable catalyst for the sequestration of CO(2).


Subject(s)
Aniline Compounds/chemistry , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Cross-Linking Reagents/chemistry , Enzymes, Immobilized/chemistry , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Adsorption , Animals , Biocatalysis , Carbon Cycle , Carbonic Anhydrases/metabolism , Cattle , Enzymes, Immobilized/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature
10.
Colloids Surf B Biointerfaces ; 90: 91-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22024402

ABSTRACT

Bovine carbonic anhydrase (BCA) was immobilized on spherical SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The spherical SBA-15 was characterized by XRD, BET, and FE-SEM analysis. (29)Si CP-MAS NMR was used to confirm the 3-aminopropyltriethoxysilane grafting (an intermediate step in the immobilization technique), and the immobilization of BCA was confirmed by FT-IR spectrum. The catalytic activities for hydration of CO(2) were calculated for free and immobilized BCA with and without buffer. The K(cat) values for free BCA, BCA-CLEA, BCA-CA and BCA-ADS were 0.79, 0.78, 0.58 and 0.36 s(-1), respectively, indicating that BCA-CLEA showed a comparatively higher hydration of CO(2) than BCA-CA and BCA-ADS, which was nearly the same as free BCA. The amount of CaCO(3) precipitated over free BCA, BCA-CLEA, BCA-CA and BCA-ADS were 140, 138, 135 and 130 mg, respectively. Performance studies, including assays on reusability, thermal stability and storage stability, were also carried out for BCA-CLEA. The results confirmed that BCA-CLEA is reusable, thermally stable and, withstands storage, and is thus a suitable candidate for use in hydration and sequestration of CO(2).


Subject(s)
Carbon Cycle , Carbon Dioxide , Carbonic Anhydrases/chemistry , Enzymes, Immobilized/chemistry , Adsorption , Animals , Biocatalysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbon Footprint , Carbonic Anhydrases/metabolism , Cattle , Cross-Linking Reagents/chemistry , Enzymes, Immobilized/metabolism , Equipment Reuse , Kinetics , Magnetic Resonance Spectroscopy , Propylamines , Silanes/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
11.
Langmuir ; 27(10): 6227-34, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21488617

ABSTRACT

A biocatalyst was synthesized by immobilizing human carbonic anhydrase onto gold nanoparticles assembled over amine/thiol-functionalized mesoporous SBA-15. The physicochemical properties of the functionalized mesoporous SBA-15 were obtained by XRD, BET, FE SEM, HR TEM, EDS, and zeta potential analysis. The biocatalytic performance was studied for para-nitrophenyl acetate (p-NPA) hydrolysis. The kinetic parameters K(m) were found to be 22.35 and 27.75 mM, and K(cat)/K(m) values were 1514.09 and 1612.25 M(-1) s(-1) for HCA immobilized on gold nanoparticles assembled on amine/thiol-functionalized mesoporous SBA-15 (HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15), respectively. These HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15 were investigated for biocatalytic hydration of CO(2) and its precipitation as CaCO(3). The amount of CaCO(3) precipitated over HCA/Au/MPTES/SBA-15 was nearly the same as that precipitated over free HCA. Storage stability and reusability studies suggested that HCA/Au/MPTES/SBA-15 retained its activity even after 20 days storage at 25 °C and 20 recycling runs. The present results demonstrate that HCA/Au/MPTES/SBA-15 and HCA/Au/APTES/SBA-15 are highly efficient potential nanobiocatalysts for industrial-scale CO(2) sequestration.


Subject(s)
Biomimetics/methods , Carbon Dioxide/isolation & purification , Carbonic Anhydrases/chemistry , Enzymes, Immobilized/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Amines/chemistry , Biocatalysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Enzymes, Immobilized/metabolism , Humans , Hydrolysis , Phenylacetates/chemistry , Porosity , Propylamines , Silanes/chemistry , Sulfhydryl Compounds/chemistry
12.
J Colloid Interface Sci ; 322(2): 537-44, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18402968

ABSTRACT

The synthesis and characterization of catalysts based on nanomaterials, supported on multi-walled carbon nanotubes (CNT) for ethylene glycol (EG) oxidation is investigated. Platinum (Pt) and platinum-ruthenium (Pt-Ru) nanoparticles are deposited on surface-oxidized multi-walled carbon nanotubes [Pt/CNT; Pt-Ru/CNT] by the aqueous solution reduction of the corresponding metal salts with glycerol. The electrocatalytic properties of the modified electrodes for oxidation of ethylene glycol in acidic solution have been studied by cyclic voltammetry (CV), and excellent activity is observed. This may be attributed to the small particle size of the metal nanoparticles, the efficacy of carbon nanotubes acting as good catalyst support and uniform dispersion of nanoparticles on CNT surfaces. The nature of the resulting nanoparticles decorated multiwalled carbon nanotubes are characterized by scanning electron microscopy (SEM) and transmission electron microscopic (TEM) analysis. The cyclic voltammetry response indicates that Pt-Ru/CNT catalyst displays a higher performance than Pt/CNT, which may be due to the efficiency of the nature of Ru species in Pt-Ru systems. The fabricated Pt and Pt-Ru nanoparticles decorated CNT electrodes shows better catalytic performance towards ethylene glycol oxidation than the corresponding nanoparticles decorated carbon electrodes, demonstrating that it is more promising for use in fuel cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...