Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(40): e202411054, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38924274

ABSTRACT

Polymorphism plays a pivotal role in generating a range of crystalline materials with diverse photophysical and mechanical attributes, all originating from the same molecule. Here, we showcase two distinct polymorphs: green (GY) emissive and orange (OR) emissive crystals of 5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TPA-CHO). These polymorphs display differing optical characteristics, with GY exhibiting thermally activated delayed fluorescence (TADF) and OR showing room temperature phosphorescence (RTP). Additionally, both polymorphic crystals display mechanical flexibility and optical waveguiding capabilities. Leveraging the AFM-tip-based mechanophotonics technique, we position the GY optical waveguide at varying lengths perpendicular to the OR waveguide. This approach facilitates the exploration of the interplay between TADF and RTP phenomena by judiciously controlling the optical path length of crystal waveguides. Essentially, our approach provides a clear pathway for understanding and controlling the photophysical processes in organic molecular crystals, paving the way for advancements in polymorphic crystal-based photonic circuit technologies.

2.
Angew Chem Int Ed Engl ; 62(25): e202302929, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36975093

ABSTRACT

We demonstrate an innovative technique to achieve organic 2D and 3D waveguides with peculiar shapes from an acicular, stimuli-responsive molecular crystal, (2Z,2'Z)-3,3'-(anthracene-9,10-diyl)bis(2-(3,5-bis(trifluoromethyl)phenylacrylonitrile), Ant-CF3 . The greenish-yellow fluorescent (FL) Ant-CF3 molecular crystals exhibit laser power-dependent permanent mechanical bending in 2D and 3D. Investigation of a single-crystal using spatially-resolved Raman/FL/electron microscopy, and theoretical calculations revealed photothermal (Z,E)/(E,E) isomerization-assisted transition from crystalline to amorphous phase at the laser-exposed regions. This phenomenon facilitates the dimension engineering of a 1D crystal waveguide into 2D waveguide on a substrate or a 3D waveguide in free space. The bends can be used as interconnection points to couple different optical elements. The presented technique has broader implications in organic photonics and other crystal-related photonic technologies.


Subject(s)
Engineering , Optical Devices , Coloring Agents , Photons
3.
Angew Chem Int Ed Engl ; 62(17): e202300046, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36762607

ABSTRACT

Visible light guiding optical fibers with underwater operational capability are highly desired for subaquatic communication and sensing technologies. Herein, we present mechanically flexible, blue-violet fluorescent (4,4'-bis(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)biphenyl) (BPP) crystal waveguides with high-aspect ratio. These milli-meter-long BPP crystals guide light actively and passively in ambient and underwater conditions demonstrating their amphibian-like character. Due to the crystal's high flexibility, the optical fiber's output light direction in submerged and ambient states can be altered mechanically for high-precision lighting and sensing applications. The development of such multi-environment-compatible and mechanically flexible organic optical fibers acting as sensing materials possess enormous potential for short-range underwater photonic technologies.

4.
Small ; 17(3): e2006795, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33354900

ABSTRACT

Precise mechanical processing of optical microcrystals involves complex microscale operations viz. moving, bending, lifting, and cutting of crystals. Some of these mechanical operations can be implemented by applying mechanical force at specific points of the crystal to fabricate advanced crystalline optical junctions. Mechanically compliant flexible optical crystals are ideal candidates for the designing of such microoptical junctions. A vapor-phase growth of naturally bent optical waveguiding crystals of 1,4-bis(2-cyanophenylethynyl)benzene (1) on a surface forming different optical junctions is presented. In the solid-state, molecule 1 interacts with its neighbors via CH⋅⋅⋅N hydrogen bonding and π-π stacking. The microcrystals deposited at a glass surface exhibit moderate flexibility due to substantial surface adherence energy. The obtained network crystals also display mechanical compliance when cut precisely with sharp atomic force microscope cantilever tip, making them ideal candidates for building innovative T- and Δ-shaped optical junctions with multiple outputs. The presented micromechanical processing technique can also be effectively used as a tool to fabricate single-crystal integrated photonic devices and circuits on suitable substrates.

SELECTION OF CITATIONS
SEARCH DETAIL